
A Unified Approach to Collaborative
Filtering via Linear Models and Beyond

Suvash Sedhain

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

June 2017

c
� 2016 Suvash Sedhain

All Rights Reserved

Supervisor

Scott Sanner
Assistant Professor, University Of Toronto
Toronto, Canada.

Co-Supervisor

Aditya Krishna Menon
Senior Researcher, DATA61
Adjunct Assistant Professor, The Australian National University
Canberra ACT, Australia

Advisor

Lexing Xie
Associate Professor, The Australian National University
Contributed Researcher, DATA61
Canberra ACT, Australia

Declaration

I hereby declare that this thesis is my original work which has been done in collaboration with other
researchers. This document has not been submitted for any other degree or award in any other university
or educational institution. The following papers are accepted for publication in peer reviewed conference
proceedings listed in a reverse chronological order:

• (Chapter 4) S. Sedhain, A. Menon, S. Sanner, L. Xie, LoCo: Social Cold-Start Recommendation
via Low-Rank Regression. In Proceedings of 31st AAAI Conference on Artificial Intelligence
(AAAI-16), San Francisco, USA.

• (Chapter 5) S. Sedhain, H. Bui, J. Kawale, N. Vlassis, B. Kveton, A. Menon, S. Sanner, T. Bui
Practical Linear Models for Large-Scale One-Class Collaborative Filtering. In Proceedings of
25th International Joint Conference on Artificial Intelligence (IJCAI-16), NY, USA.

• (Chapter 5) S. Sedhain, A. Menon, S. Sanner, D. Braziunas, On the Effectiveness of Linear
Models for One-Class Collaborative Filtering. In Proceedings of 30th AAAI Conference on
Artificial Intelligence (AAAI-16), Phoenix, USA.

• (Chapter 6) S. Sedhain, A. Menon, S. Sanner, and L. Xie, AutoRec: Autoencoders Meet Collab-
orative Filtering. In Proceedings of the 24th International World Wide Web Conference (WWW-
15), Florence, Italy.

• (Chapter 4) S. Sedhain, S. Sanner, D. Braziunas, L. Xie, and J. Christensen, Social Collabo-
rative Filtering for Cold-start Recommendations. In Proceedings of the ACM Conference on
Recommender Systems (RecSys-14). Silicon Valley, USA.

• (Chapter 3) S. Sedhain, S. Sanner, L. Xie, R. Kidd, K.-N. Tran, and P. Christen Social Affinity
Filtering: Recommendation through Fine-grained Analysis of User Interactions and Activities. In
Proceedings of the ACM Conference on Online Social Networks (COSN-13). Boston, USA.

Suvash Sedhain
14 June 2017

v

U1005913
Text Box

To my aama and buwa.

Acknowledgments

I would like to express my sincere gratitude to everyone who made this thesis possible.
First of all, I would like to express my deepest gratitude to my supervisor, Dr. Scott Sanner,

for all his guidance, patience and support throughout my doctoral study. Scott’s immense knowledge,
enthusiasm, and inspiration always helped me to stay motivated. I am grateful to him for advising not
only as a doctoral supervisor but also as a good friend during the hard times. In short, I couldn’t have
imagined having a better supervisor for my Ph.D.

I would like to thank my co-supervisor, Dr. Aditya Krishna Menon, for helping me to grow as
a researcher. His in-depth knowledge and remarkable ability to explain things in a simplest possible
way made research fun for me. He has been a great mentor and a friend with whom I could discuss
topics ranging from science to Game of Thrones. Further, I would like to thank my co-supervisor, Dr.
Lexing Xie, for her immense support, encouragement, and helpful suggestions. I would like to express
my sincere gratitude for her generosity in providing me the computational resources without which I
couldn’t have done my research.

I acknowledge the financial, academic and technical support provided by the National ICT of Aus-
tralia (NICTA) and the Australian National University (ANU) for my doctoral program.

I am indebted to my colleagues at NICTA and ANU for providing a friendly environment that al-
lowed me to grow as a person. Thank you for your stimulating discussions and support through the entire
process. My special thanks to Trung Nguyen, Kar Wai Lim, Fazlul Hasan Siddiqui, Shamin Kinathil,
Swapnil Mishra, Hadi Mohasel Afshar, Shahin Namin, Dana Pordel, Brendan Van Rooyen and Daniel
McNamara. I would like to thank my friends Niroj Sapkota, Hira Babu Pradhan and Saroj Gautam for
always being there for me.

I would like to thank Darius Braziunas for hosting my internship at Rakuten Kobo, and Jaya Kawale
and Hung Bui for hosting my internship at Adobe Research.

I am grateful to my wife Komal Agarwal for her encouragement, unconditional love, and support
throughout my PhD. I would like to thank my brother, Surendra Sedhain, and sisters, Bhagabati Sedhain,
Suma Sedhain and Shova Sedhain for their love and support. I am also grateful to my niece Aatmiya
Silwal and Samipya Mainali for always bringing a smile to my face.

Finally, and most importantly, I would like to thank my parents, Keshav Raj Sharma Sedhain and
Chandra Kumari Sedhain. I couldn’t have done this without their guidance, encouragement, unfath-
omable love and support. I dedicate this thesis to them.

ix

Abstract

Recommending a personalised list of items to users is a core task for many online services such as Ama-
zon, Netflix, and Youtube. Recommender systems are the algorithms that facilitate such personalised
recommendation. Collaborative filtering (CF), the most popular class of recommendation algorithm,
exploits the wisdom of the crowd by predicting users’ preferences not only from her past actions but
also from the preferences of other like-minded users. In general, it is desirable to have a CF framework
that is (1) applicable to wide range of recommendation scenarios, (2) learning-based, (3) amenable to
convex optimisation, and (4) scalable. However, all existing CF methods, such as neighbourhood and
matrix factorisation, lack one or more of these desiderata.

In this dissertation, we investigate linear models, an under-appreciated but promising area for recom-
mendations that addresses all the above desiderata. We formulate a unified framework based on linear
models that yields CF algorithms for four prevalent scenarios. First, we investigate Social CF, which in-
volves leveraging users’ signals from online social networks. We propose social affinity filtering (SAF),
that exploits fine-grained user interactions and activities in a social network. Second, we investigate
Cold-Start CF, which refers to the scenario when we do not have any historical data about a user or
an item. We formulate a large-scale linear model that leverages users social information. Third, we
investigate One-Class CF, which concerns suggesting relevant items to users from the data that consists
of only positive preferences such as item purchase.Noting the superior performance of linear models,
we propose LRec, a user-focused linear CF model, and extend it to large-scale datasets via dimension-
ality reduction. Finally, we investigate Explicit Feedback CF, which concerns predicting user’s actual
preferences such as rating, or like/dislikes. We identify CF as an auto-encoding problem and propose
AUTOREC, a generalized neural network architecture for CF. We demonstrate state-of-the-art perfor-
mance of the proposed models through extensive experimentation on real world datasets.

In a nutshell, this dissertation elucidates the power of linear models for various CF tasks and paves
the way for further research on applying deep learning models to CF.

xi

Contents

Declaration v

Acknowledgments ix

Abstract xi

List of Figures xvii

List of Tables xix

List of Symbols xxi

1 Introduction 1
1.1 Background: Personalised recommendation . 1
1.2 Motivation: What is lacking in existing CF algorithms? 2
1.3 Our approach to CF: Linear models and beyond . 3

1.3.1 Linear models for recommendation . 3
1.3.2 Beyond linear models . 3

1.4 Key contributions of dissertation . 3
1.5 Outline of dissertation . 5

2 Overview of Recommender Systems 7
2.1 Recommendation problem: Formal definition . 7
2.2 Approaches to recommendation . 8

2.2.1 Content based filtering (CBF) . 8
2.2.2 Collaborative filtering (CF) . 8

2.3 Collaborative filtering models . 9
2.3.1 Neighbourhood models (KNN) . 9
2.3.2 Matrix factorisation models (MF) . 10

2.4 Collaborative filtering scenarios . 11
2.4.1 Explicit feedback CF . 11
2.4.2 One-class CF . 12
2.4.3 Cold-start CF . 15
2.4.4 Social CF . 16

2.5 Evaluation of recommender systems . 17
2.5.1 Error based metrics . 18
2.5.2 Ranking metrics . 18

2.6 Summary . 19

xiii

xiv Contents

3 Linear Models for Social Recommendation 21
3.1 Problem statement . 21
3.2 Background . 21
3.3 Social affinity filtering . 22

3.3.1 Social signals . 22
3.3.2 Social affinity features from social signals . 25
3.3.3 Recommendation model . 25
3.3.4 Model analysis . 25

3.4 Experiment and evaluation . 26
3.4.1 Data description . 27
3.4.2 Model comparision . 28
3.4.3 Performance analysis . 29
3.4.4 Cold-Start evaluation . 30
3.4.5 Interaction analysis . 32
3.4.6 Activity analysis . 32

3.5 Related work and discussion . 35
3.6 Conclusion . 37

4 Linear Models for Cold-Start Recommendation 39
4.1 Problem setting . 39
4.2 Background . 39

4.2.1 Neighbourhood based cold-start CF . 40
4.2.2 MF based cold-start CF . 40
4.2.3 Limitations of existing approaches . 41

4.3 Linear models for cold-start recommendation . 41
4.3.1 Generalised neighbourhood (Gen-Neighbourhood) based cold-start model 42
4.3.2 Low linear cold-start (LoCo) model . 43

4.4 Relation to existing models . 43
4.4.1 Neighbourhood model . 44
4.4.2 CMF model . 44
4.4.3 BPR-LinMap model . 44

4.5 Experiment and evaluation . 45
4.5.1 Data description . 45
4.5.2 Model comparison . 45
4.5.3 Results and analysis . 46

4.6 Conclusion . 50

5 Linear Models for One-Class Collaborative Filtering 51
5.1 Problem setting . 51
5.2 LRec: Linear model for OC-CF . 51

5.2.1 A linear classification perspective . 52
5.2.2 A positive and unlabelled perspective . 53
5.2.3 Properties of LRec . 53

5.3 Extensions of LRec . 53
5.3.1 Incorporating side-information . 53
5.3.2 Weighting for class-imbalance . 54

Contents xv

5.3.3 Subsampling negatives . 54
5.4 Relation to existing models . 55

5.4.1 Relation to SLIM . 55
5.4.2 Relation to neighbourhood methods . 55
5.4.3 Relation to matrix factorisation . 56

5.5 LRec for rating prediction? . 57
5.6 LinearFlow: Fast low rank linear model . 57
5.7 Experiments and evaluation of LREC model . 59

5.7.1 Data description . 59
5.7.2 Evaluation protocol . 59
5.7.3 Model comparison . 60
5.7.4 Results and analysis . 61
5.7.5 Long-tail recommendations . 63
5.7.6 Near cold-start recommendation . 63
5.7.7 Case-Study . 64

5.8 Experiments and evaluation of LINEAR-FLOW model 65
5.8.1 Data description . 65
5.8.2 Evaluation protocol . 66
5.8.3 Model comparison . 66
5.8.4 Results and analysis . 67

5.9 Conclusion . 70

6 Beyond Linear Models: Neural Architecture for Collaborative Filtering 71
6.1 Problem setting . 71
6.2 Background : Neural network architectures . 71

6.2.1 Restricted Boltzmann Machine (RBM) . 71
6.2.2 Autoencoders . 73
6.2.3 RBM for collaborative filtering (RBM-CF) . 73

6.3 AutoRec: Autoencoders meet collaborative filtering . 75
6.4 Relation to existing models . 76

6.4.1 Relation to matrix factorisation . 77
6.4.2 Relation to LRec and LINEAR-FLOW . 77
6.4.3 Relation to LoCo . 78

6.5 AutoRec for OC-CF . 78
6.6 Experiments and evalution . 78

6.6.1 Data description . 78
6.6.2 Model comparison . 79
6.6.3 Results and analysis . 79

6.7 Conclusion . 81

7 Conclusion 83
7.1 Summary of Contributions . 83
7.2 Future work . 84

7.2.1 Exploration of emerging deep learning architectures 84
7.2.2 Incorporating temporal information . 84
7.2.3 Ensemble methods for OC-CF . 84

xvi Contents

7.2.4 Models for location aware recommendation . 85
7.3 Conclusion . 85

Appendix A Randomised SVD 87

8 Bibliography 89

List of Figures

2.1 Overview of recommender systems. 8
2.2 Feature encoding in Matchbox model. 11
2.3 Aggregation of social features. 16

3.1 Overview of Social Affinity Filtering setting. 22
3.2 Overview of Interactions and Activities in Facebook social network. 23
3.3 Training data for SAF. 26
3.4 Evaluation of SAF with baselines. 29
3.5 Cold-start evaluation of SAF . 30
3.6 Conditional Entropy of modalities/activities . 31
3.7 Evaluation of informativeness of social affinity features. 34
3.8 Average conditional entropy of activities cumulative over the size. 34
3.9 Conditional entropy of favourites features. 35
3.10 Comparison of Accuracy of SAF with user activities. 35
3.11 Comparison of Accuracy of SAF with the number of active features. 35

4.1 Performance of COS-COS with the number of page likes. 49
4.2 Performance of LoCo with the number of page likes. 49
4.3 Performance of LoCo performance with the dimension of projection. 50

5.1 Long-tail results for LRec on ML1M dataset. 63
5.2 Improvement in Prec@20 of LRec over WRMF. 64
5.3 Performance of LRec with the number of training ratings. 64
5.5 Evaluation of recommendation of LRec and WRMF . 65

6.1 Restricted Boltzmann Machine. 72
6.2 Autoencoder model. 73
6.3 RBM based collaborative filtering model. 74
6.4 AUTOREC model. 76
6.5 Generalised neural architecture for CF. 77
6.6 Performance of I-AUTOREC on ML1M wrt number of hidden units. 81

xvii

xviii LIST OF FIGURES

List of Tables

1.1 Summary of the proposed methods . 4

3.1 Commonly used symbols for Social Affinity Filtering. 22
3.2 LinkR app users demographics. 27
3.3 Statistics on user interactions. 27
3.4 Statistics on user actions. 27
3.5 Dataset breakdown based on friend and non-friend link. 28
3.6 Conditional entropy of various interactions. 31
3.7 Most and Median informative favourite features. 33

4.1 Comparative overview of various cold-start methods 41
4.2 Summary of cold-start recommendation for various approaches. 44
4.3 Description of Kobo and Flickr datasets. 45
4.4 Performance of generalised neighbourhood based cold-start model on Kobo dataset. . . . 47
4.5 Performance of generalised neighbourhood based cold-start model on Kobo dataset. . . . 47
4.6 Comparison of Cos-Cos cold-start model for various user side-information. 47
4.7 Comparison of cold-start recommenders on Kobo dataset. 48
4.8 Comparison of cold-start recommenders on Flickr dataset. 48
4.9 Performance of cold-start and near cold-start recommenders on Kobo dataset. 48
4.10 Comparison of validation times on Kobo dataset. 49

5.1 Comparison of recommendation methods for OC-CF. 54
5.2 Summary of datasets used in evaluation. 59
5.3 Results on ML1M dataset. 61
5.4 Results on LASTFM dataset. 61
5.5 Results on KOBO dataset. 62
5.6 Results on MSD dataset. 62
5.7 Comparison of LRec and WRMF recommendations . 65
5.8 Summary of datasets used in evaluation. 66
5.9 Results on ML10M dataset . 67
5.10 Results on LASTFM dataset . 67
5.11 Results on KOBO dataset . 67
5.12 Results on PROPRIETARY-1 dataset. 68
5.13 Results on PROPRIETARY-2 dataset. 68
5.14 Results on ML10M dataset. 69
5.15 Training time of various OC-CF methods. 69
5.16 Top-5 similar items learned by I-LINEAR-FLOW model. 70

6.1 Generalised AutoRec model. 77
6.2 Summary of datasets used in evaluation. 79

xix

xx LIST OF TABLES

6.3 Comparison of AUTOREC and RBM-CF models. 79
6.4 Performance of various optimization methods. 80
6.5 Variation of performance with the choice of activation functions. 80
6.6 Evaluation of AUTOREC with baselines. 81

7.1 Summary of the proposed methods . 84

List of Symbols

R Real number

R Partially observed user-item preference matrix

|R| Number of observed entries in matrix R
ˆR Recommendation matrix

U Set of users

I Set of items

XU Users’ side information

XI Items’ side information

Iu Set of items purchased/rated by the user u

Ui Set of users who purchased/rated the item i

A User latent factor matrix

B Item latent factor matrix

S Similarity matrix

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

1.1 Background: Personalised recommendation

Over the last decade, the Internet has evolved into a platform for large-scale online services such as
Amazon, Netflix, Facebook, eBay, and Youtube. These services has transformed the way we communi-
cate, buy products, watch movies, and listen to music. The number of items 1 offered by online services
is unprecedented and ever increasing. As a result, automated systems for item filtering, suggestion and
discovery have become very relevant.

Recommender systems are the algorithms that facilitate personalised recommendation by learning
users’ preferences from a database of their past actions. At a high level, recommender systems are the
algorithmic counterpart of a smart personal assistant that finds relevant items on your behalf. On the
one hand, recommender systems reduce individual effort in finding relevant items; on the other hand,
they add immense business value to the service providers. Specifically, recommender systems help
online services to increase their sales [Lee and Hosanagar, 2014] and user engagement. For instance,
[Davidson et al., 2010] reported that recommendation accounts for about 60% of total video clicks from
Youtube homepage. Hence, recommender systems are at the core of the online services, such as:

• Entertainment: Online services, such as Netflix [Gomez-Uribe and Hunt, 2015], Youtube [Davidson
et al., 2010], Spotify, etc. extensively use personalised recommendation to deliver relevant content to
the users. Netflix reported that recommendations account for 80% of the hours streamed [Gomez-
Uribe and Hunt, 2015].

• E-commerce: Many online stores, such as Amazon [Linden et al., 2003], eBay [Zhang and Pennac-
chiotti, 2013], use recommender systems to help customers to find relevant items. By exposing users
to relevant items, recommender systems not only attract potential buyers but also convert site surfers
to buyers.

• Social networks: Recommender systems are widely used in online social networks to help users in
exploring new social connections and relevant contents. Facebook [Backstrom and Leskovec, 2011]
and Twitter [Gupta et al., 2013] use recommender systems to suggest friends, interesting posts and
to serve relevant advertisements. Similarly, Linkedin, a popular professional social network, uses
recommender systems [Amin et al., 2012] in suggesting relevant jobs, companies, and candidates for
recruiters.

There are two main approaches to personalised recommendation: content-based filtering (CBF) [Pazzani
and Billsus, 2007] and collaborative filtering (CF) [Resnick and Varian, 1997, Sarwar et al., 2001, Linden
et al., 2003, Koren et al., 2009, Koren, 2010b]. CBF makes a recommendation leveraging user and item

1We use the term item to refer products, books, movies, music, videos, etc.

1

2 Introduction

attributes. On the other hand, CF algorithms make a personalised recommendation by directly learning
users’ preferences from user-item interaction data. CF algorithms are widely popular mainly due to
their superior performance over CBF [Linden et al., 2003]. In this dissertation, we primarily focus on
developing CF algorithms for the personalised recommendation.

In a real-world recommendation task, there arise various scenarios based on data sources and prob-
lem setting. CF can be categorised into two different problem classes, explicit feedback CF and one-class
CF, depending on the nature of the preference data. Explicit feedback CF concerns predicting user’s ac-
tual preferences from rating, or like/dislikes data. One-class CF (OC-CF) concerns suggesting relevant
items to users from the data that consists of only positive preferences such as item purchase. On the other
hand, different CF scenarios arise based on the recommendation settings. For instance, Cold-start CF
refers to the scenario when we do not have any historical data about users or items. Similarly, Social-CF
involves leveraging users’ signals from social networks when such data is available. In this dissertation,
we focus on formulating algorithms for the above CF scenarios.

1.2 Motivation: What is lacking in existing CF algorithms?

Recommender systems are a very active area of research in both industry and academia. Over the years,
many CF algorithms have been proposed. In general, it is desirable to have a CF framework that is
(1) applicable to wide range of recommendation scenarios, (2) learning-based, (3) amenable to convex
optimisation, and (4) scalable2. However, there are several limitations to existing approaches which
limit their application.

Most existing work on CF focuses on Neighbourhood (KNN) and Matrix factorisation (MF) meth-
ods. KNN algorithms [Herlocker et al., 1999, Bell and Koren, 2007, Sarwar et al., 2001, Linden et al.,
2003] make recommendations by finding similar users or items. As a key limitation, KNN uses prede-
fined similarity metric instead of learning directly from the data by optimising some objective function,
and hence is unable to adapt to the characteristics of the data at hand. On the other hand, MF al-
gorithms [Salakhutdinov and Mnih, 2008b, Koren et al., 2009] incorporate learning by factorising the
user-item preference matrix in an optimisation framework. However, MF models are non-convex, and
hence are susceptible to sub-optimal local minima. Recently, [Ning and Karypis, 2011] proposed SLIM,
a constrained linear model for OC-CF with a convex objective. However, SLIM is not user-focused and
involves constrained optimisation limiting its applicability on large scale datasets.

In addition to the above limitations, a key problem with the existing approaches is that there is no
definite answer as to which CF model class works best for broad range of recommendation scenarios.
For instance, CF algorithms, such as MF, are unable to make recommendations in cold-start scenar-
ios. Furthermore, most of the work on social-CF extends existing CF algorithms to incorporate social
signals [Ma et al., 2011b, Noel et al., 2012, Ma et al., 2009b, 2008b]. However, these models are not
expressive enough to incorporate fine-grained social signals limiting the full exploitation of the available
data.

In summary, the existing approaches have several limitations for a real world recommendation sce-
nario. Hence, there is a need for a different approach to CF that addresses all key desiderata.

2In this thesis, we refer these properties as key CF desiderata.

§1.3 Our approach to CF: Linear models and beyond 3

1.3 Our approach to CF: Linear models and beyond

As discussed in Section 1.2, the existing approaches to CF have several limitations. In this section, we
discuss our approach to CF addressing all the above desiderata.

1.3.1 Linear models for recommendation

In this dissertation, we focus on investigating linear models, an underappreciated but promising area for
recommendations that addresses all CF desiderata. We formulate a unified framework based on linear
models for different CF scenarios.

Linear models [Nelder and Baker, 2004] are the most widely used method for various practical ma-
chine learning problems. They have several desirable properties, as we will discuss shortly, which make
them attractive for a broad range of problems. First, unlike neighbourhood methods, linear methods learn
from data by minimising some objective function. Second, linear models facilitate the design of convex
objectives which ensure globally optimal solution. Third, they are simple and scalable, which is very
desirable while building a large-scale system. For instance, linear regression has a closed-form solution,
which can be exploited to scale recommendation to large datasets, as we will show in this thesis. Further,
we will show that the formulation of CF problems as a linear model yields an embarrassingly parallel
model i.e. one that can be learned without distributed communication during the optimisation. Fourth,
linear models are theoretically well understood, and various efficient off-the-shelf optimisation tools and
algorithms are available. Fifth, Linear models are highly interpretable. Interpretability of the model not
only helps to understand and improve the model but also to explain the recommendations generated by
the model. Especially, by explaining the recommendations, the system becomes more transparent, builds
users’ trust in the system and convinces them to consume the recommended items [Vig et al., 2009].

1.3.2 Beyond linear models

In the last couple of years, nonlinear methods have gained a lot of attention due to impressive perfor-
mance. In particular, deep learning has revolutionised many areas of machine learning, namely computer
vision [Krizhevsky et al., 2012], natural language processing [Mikolov et al., 2013] and speech recog-
nition [Hinton et al., 2012] . However, there has been very limited research in the application of deep
learning for CF [Salakhutdinov et al., 2007]. In this dissertation, we identify CF as an auto-encoding
problem and propose a general nonlinear neural network architecture for CF, bridging the core of the
thesis to the deep learning literature.

1.4 Key contributions of dissertation

Before outlining the contributions of this dissertation, we first define the commonly used symbols. Let
R denote the user-item preference matrix, X denote the user features, and X(te) denote cold-start users
features. Further, let R ⇡ PkSkQT

k and X ⇡ UkSkVT
k be a singular value decomposition (SVD) of

the preference and feature matrix respectively. Finally, let f (·), g(·) denote the activation function. The
contributions of this dissertation are in formulating linear models for different CF scenarios and a neural
architecture that generalises to various CF models. In this dissertation, we investigate various CF models
as summarised in Table 1.1.

1. Linear models for social collaborative filtering
In our first contribution, we focus on Social-CF problem. The majority of work on Social-CF

4 Introduction

Model Recommendation Model parameters

Linear

SAF Xdiag(w)XTR w
LoCo X(te)VkZ Z
LREC WR W
LINEAR-FLOW ZPT

k R Z
Non Linear AUTOREC f (U · g(VR)) U, V

Table 1.1: Summary of the proposed models.

aggregates rich social information into a single measure of user-to-user interaction [Cui et al.,
2011, Li and Yeung, 2009b, Noel et al., 2012, Ma et al., 2008b]. But in aggregating all of these
interactions and activities into a single strength of interaction we discard valuable fine-grained
information. Hence, the existing approaches to Social-CF are not capable of exploiting rich social
data. To address this limitation, we propose a scalable linear Social-CF algorithm, Social Affinity
Filtering (SAF), which learns to weight fine-grained user interaction and activities in a social
network. We show that only a small subset of user interactions and activities are valuable for the
recommendation, hence learning which of these are most informative is of critical importance.
Furthermore, we show that Facebook page likes are highly predictive of users’ preferences. The
insights from this work provide a foundation for the follow-up work on cold-start recommendation
work.

2. Linear models for social cold-start recommendation
As a second contribution, we investigate linear models for cold-start recommendation. Without
loss of generality, we focus on user cold-start 3, for OC-CF setting. The user cold-start problem
concerns the task of recommending items to users who have not previously purchased or otherwise
expressed preferences towards any item under consideration. We show how several popular cold-
start models can be seen as special case of a linear content-based model. Leveraging this insight
and the predictive power of social information, we propose a class of large-scale linear models
that leverages high dimensional social information for the cold-start recommendation. We present
a comprehensive experimental evaluation to demonstrate the superior performance of proposed
method and the predictive power of social network content in addressing the cold-start problem.

3. Linear models for one class collaborative filtering
As a third contribution, motivated by the superior performance of the linear models on Social-
CF and Cold-Start recommendation, we investigate linear models in a general OC-CF setting. We
propose, LREC, a user-focused linear model. LREC produces user-personalised recommendations
by training a convex, unconstrained objective that is embarrassingly parallelisable (i.e., without
distributed communication) across users. A comprehensive set of experiments on a range of real-
world datasets reveals LRecs superior performance compared to the state-of-the-art methods.

4. Large scale linear models via dimensionality reduction
Linear methods, LRec and SLIM, yield good performance on OC-CF problem. However, they
involve solving a large number of regression subproblems, which can be impractical to large
scale problems. Furthermore, LRec is also expensive regarding the memory requirements. We
address these limitations by proposing LINEAR-FLOW, which formulates OC-CF as a regularised
linear regression problem that uses randomised SVD for fast dimensionality reduction. Through

3the proposed approach is general and also applicable to the item cold-start

§1.5 Outline of dissertation 5

extensive experiments on real-world datasets, we demonstrate that Linear-Flow achieves state-of-
the-art performance as compared to other methods, with a significant reduction in computational
cost.

5. Neural network architecture for collaborative filtering
As a final contribution, we take a departure from linear models by exploring deep learning models.
We show that a particular neural architecture, an Autoencoder, can represent a broad range of CF
models. We propose AUTOREC, a neural architecture, that generalises various CF methods. A
comprehensive set of experiments on a range of real-world datasets reveals that AutoRec yields
state-of-the-art results on the rating prediction problem.

To summarise, the core of this dissertation focus on formulating a unified approach to CF using linear
models that performs well on various CF scenarios. We conclude by bridging the core of the dissertation
to deep learning architecture, and leading the way for future research on applying deep learning models
to CF.

1.5 Outline of dissertation

In this thesis, starting from a concrete, practically relevant scenario where linear models are useful, we
progressively use the insights derived in the design of these models to apply them to a broad spectrum
of CF tasks.

Chapter 2 introduces the necessary background and terminology for recommender systems. In par-
ticular, we introduce the terminologies and basic concepts. We discuss related work and seminal CF
algorithms for different CF scenarios.

In Chapter 3, we introduce our novel Social collaborative filtering algorithm, Social Affinity Filtering
(SAF). We provide a detailed experimental analysis and demonstrate the superiority of the proposed
algorithm compared to state-of-the-art social collaborative filtering algorithms. Furthermore, we present
feature analysis and demonstrate the substantial predictive power of social features.

In Chapter 4, we introduce our cold-start algorithm, LoCo, that leverages high dimensional social
features. We present the experimental evaluation to demonstrate the superiority of proposed model and
predictive power of social network content in addressing the cold-start problem.

In Chapter 5, we present LRec, a novel user focused linear model for one-class collaborative filtering.
We perform a thorough experimentation on four real-world datasets to demonstrate the superiority of
the LRec. Next, we address the computational and space limitation of LRec by proposing LINEAR-
FLOW, a linear algorithm that leverages fast dimensionality reduction via randomised algorithms. In a
comprehensive set of experiments, we show the proposed method is computationally efficient and yields
comparable results.

Chapter 6 introduces AUTOREC, a general neural network architecture for CF. We report our evalu-
ations on three different datasets and demonstrate that AutoRec yields the state-of-the-art results.

Finally, in Chapter 7, we summarize our work presented in this thesis, and present a number of
interesting future directions.

6 Introduction

Chapter 2

Overview of Recommender Systems

In this Chapter, we will formally define the recommendation problem, discuss approaches to the rec-
ommendation and various Collaborative Filtering (CF) algorithms as outlined in Figure 2.1. We then
discuss the four prevalent CF scenarios that we investigate in this dissertation, as mentioned in Chapter
1. We conclude by discussing evaluation metrics used in this dissertation to evaluate all recommendation
algorithms.

2.1 Recommendation problem: Formal definition

Recommendation is essentially a task of predicting users’ preferences on items they have not consumed.
Let U denote a set of users, and I a set of items, with m = |U| and n = |I|. Let R denote the
observed user-item preference matrix; for explicit feedback R 2 Rm⇥n where higher scores refer to
higher preference e.g. as in ratings, whereas for one-class feedback data R 2 {0, 1}

m⇥n where Rui

indicates whether u purchased item i or not. For simplicity, we set the unobserved entries, Rui, to 0 . Let
Iu denote the set of the items for which user u has expressed preference, and Ui be the set of the users
who have expressed preference for the item i.

The goal of recommender systems is to predict the preferences of user u on unobserved items, i.e.
I � Iu. In other words, recommendation can be defined as learning ˆR 2 Rm⇥n, the recommendation
matrix which approximates users preference on items. We refer to the symbol table at the beginning of
this dissertation for commonly used symbols. Formally, the recommendation problem is defined as:

Definition 1. Given a set of users U and items I, a recommender system learns a function F : Rm⇥n
!

Rm⇥n, where F(R) = ˆR , which predicts users preference on items. Optionally, it can take any addi-
tional information, such as user features XU

2 Rm⇥d or item features XI
2 Rn⇥d

Based on the problem formulation and its evaluation, which we will discuss later, recommendation
can be grouped into two different tasks:

• Rating Prediction task concerns with predicting the exact rating for user u on item i. Rating
prediction is exemplified by the Netflix challenge [Bennett et al., 2007b] and widely used in the
explicit feedback setting.

• Ranking task concerns with recommending a ranked list of relevant items to a user u. Since the
end goal of a recommender system is to suggest a list of relevant items, recommendation as a
ranking task is preferred in real world setting.

7

8 Overview of Recommender Systems

Recommendation Approaches

Collaborative Filtering (CF)

Matrix Factorisation (MF)Neighborhood (KNN)

Item-KNNUser-KNN

Content Based Filtering (CBF)

Item-CBFUser-CBF

Figure 2.1: Overview of recommender system approaches and models.

2.2 Approaches to recommendation

There are two main approaches to personalised recommendation, namely Content based filtering and
Collaborative filtering.

2.2.1 Content based filtering (CBF)

Content-based filtering (CBF) [Pazzani and Billsus, 2007] uses item or user features 1 to predict the
users’ preferences. CBF treats the recommendation as regression or classification problem and learns a
user or item specific recommendation model. There are two categories of CBF:

• User-CBF makes a recommendation by learning an item-specific model from the user features
and observed preference for the corresponding item. Principally, User-CBF makes a recommen-
dation by finding the items liked by the users with similar features. User demographics (age, sex,
location, etc.) are widely used features for User-CBF.

• Item-CBF learns a user-specific recommendation model from the item features and observed pref-
erence for the corresponding user. Item descriptions, tags, and reviews are widely used item fea-
tures for Item-CBF.

CBF has some advantages, especially for cold-start recommendation i.e. they can provide meaning-
ful recommendation to the users without any preference data. However, the key limitation of CBF is
that they suffer from over-specialization [Lops et al., 2011], which means the recommended items lack
novelty. For instance, the recommendation for Item-CBF is restricted to the items that are similar to the
previously liked items. Similarly, the recommendations for User-CBF are limited to the items liked by
similar users based on a coarse approximation from the users’ features. Hence, CBF lack serendipitous
discovery of items.

2.2.2 Collaborative filtering (CF)

Collaborative Filtering (CF) [Goldberg et al., 1992, Resnick and Varian, 1997, Sarwar et al., 2001,
Linden et al., 2003, Koren et al., 2009, Koren, 2010b] is the most popular recommendation algorithm and
has become the de facto choice of model for recommendation. CF algorithms are based on the general
idea that users’ preferences may be correlated and one can detect and exploit these correlations across

1We use the term feature to refer user attributes and item content/descriptions.

§2.3 Collaborative filtering models 9

the user population to make recommendations for a user. In a broad sense, CF algorithms leverages three
different kinds of correlation within the user-item preference data:

• inter-item correlation, which refers to the fact that the items liked by similar set of users are
correlated

• inter-user correlation, which refers to the fact that the user who liked similar set of items are
correlated

• intra user-item correlation, which refers to the fact that the users who agreed in the past will tend
to agree in the future. Similarly, users tend to prefer the items that are similar to the ones they
already liked.

Based on these key assumptions, CF algorithms exploit the wisdom of the crowd by predicting users’
preferences not only from her past actions but also from the preferences of like-minded users. In other
words, CF algorithms allows users to collaborate with each other in predicting user’s preferences.

Over the years, many CF algorithms have been proposed. Tapestry [Goldberg et al., 1992] was the
first system to introduce the term CF and applied it in the context of email filtering. Later, [Resnick et al.,
1994] proposed a rating based CF system for recommending news articles. Although CF had been an
active area research in industry, it received lots of attention after the “Netflix challenge“ [Bennett et al.,
2007b].

CF algorithms are attractive for recommendation due to various reasons. First, CF learns to make
personalised recommendation from preference data. Second, unlike CBF, CF algorithms do not over-
specialize and are capable of making serendipitous [Herlocker et al., 2004] recommendations. However,
most of the CF algorithms are not capable of making recommendations in cold-start scenarios. In the
following section, we will discuss various CF algorithms in detail.

2.3 Collaborative filtering models

In this section, we discuss the various types of CF algorithms.

2.3.1 Neighbourhood models (KNN)

Neighbourhood-based CF models [Herlocker et al., 1999, Bell and Koren, 2007, Sarwar et al., 2001,
Linden et al., 2003] are based on the general idea that users share their taste with similar users or similar
items. Neighbourhood-based CF makes recommendations by computing k-nearest neighbours for each
user or item. Hence, it is referred as k-Nearest Neighbour (KNN) algorithm in the literature. KNN based
CF defines neighbourhood from observed user-item preference data using various predefined similarity
metrics, which we will discuss shortly. There are two approaches to neighbourhood-based models:

1. User-Based Neighbourhood Model (U-KNN) [Herlocker et al., 1999, Bell and Koren, 2007]
leverages inter-user and intra user-item correlation from the observed user-item preference data.
It is based on the key assumption that the similar users like similar items and predicts users’
preferences using the user-user similarity matrix.

2. Item-Based Neighbourhood Model (I-KNN) [Sarwar et al., 2001, Linden et al., 2003] leverages
inter-item and intra user-item correlation from the observed user-item preference data. It assumes
that the users tend to like the items that are similar to the previously liked items. While U-KNN
uses user-user similarity for recommendation, I-KNN uses item-item similarity for recommenda-
tion.

10 Overview of Recommender Systems

Various similarity metrics are used to define the neighbourhood. The most common similarity met-
rics are

Pearson Correlation, which measures the strength and direction of the linear relationship between
entities. For rating data, Pearson correlation between users u and v is computed as

Suv =
Âi2Iuv

(Rui � ¯Ru)(Rvi � ¯Rv)q
Âi2Iuv

(Rui � ¯Ru)2

q
Âi2Iuv

(Rvi � ¯Rv)2

where, Iuv = Iu \ Iv, and ¯Ru and ¯Rv are the mean of the observed ratings for user u and v
respectively.

Cosine Similarity, which measures the angle between two vectors. It is widely used in both rating
prediction and item recommendation problem. The cosine similarity between user u and v is
computed as

Suv =
h

Ru:

, Rv:

i

k

Ru:

k

2

k

Rv:

k

2

,

where
h

·, ·

i

denotes inner product.

Jaccard Similarity, which measures the similarity between two sets. The Jaccard similarity between
user u and v is computed as

Suv =
|

Iu \ Ii|

|

Iu [Ii|

The similarities between items Sij can be computed in a same way.
Neighbourhood methods are attractive for several reasons. They are simple to implement, efficient,

and interpretable. However, they define S using a fixed similarity metrics instead of learning them by
optimising some principled loss function [Koren, 2008]. Further, recommendation performance can be
quite sensitive to the choice of S, and the choice depends on the problem domain(as shall be shown in
later experiments). Hence, neighbourhood methods are unable to adapt to the characteristics of the data
at hand.

2.3.2 Matrix factorisation models (MF)

MF based models [Srebro and Jaakkola, 2003, Salakhutdinov and Mnih, 2008b, Koren et al., 2009]
embed users and items into some shared latent space, with the aim of inferring complex preference
profiles for both users and items. MF models are based on the key idea that the user-item preference
data is correlated, and hence can be expressed in terms of low-rank user and item latent factors.

Formally, let J 2 Rm⇥n
+ be some pre-defined weighting matrix to be defined shortly. Let ` : R ⇥

R ! R+ be some loss function, typically squared loss `(y,

ˆy) = (y �

ˆy)2. Then, the general matrix
factorisation framework optimises

min

q
Â

u2U,i2I
Jui · `(Rui, ˆRui(q)) + W(q), (2.1)

§2.4 Collaborative filtering scenarios 11

0

1

0

2

0

3

1

4
· · ·

0

m � 2

0

m � 1

0

m

1

m + 1

0

m + 1

· · ·

0

m + du � 1

1

m + du

one-hot encoding for user u
4

u
4

features

Figure 2.2: XU for user u
4

in matchbox model

where the recommendation matrix is2

ˆR(q) = ATB (2.2)

for q = {A, B}, and W(q) is the regulariser, which is typically

W(q) =
l

2

· (||A||

2

F + ||B||2F)

for some l > 0. The matrices A 2 Rk⇥m
, B 2 Rk⇥n are the latent representations of users and items

respectively, with k 2 N+ being the latent dimension of the factorisation.
MF is one of the most extensively studied model in the field of CF. [Salakhutdinov and Mnih,

2008a] proposed a fully Bayesian model for MF. Similarly, [Lawrence and Urtasun, 2009] proposed a
nonlinear MF algorithm using Gaussian process. However, these models are computationally expensive
and are not suitable for large scale recommendation.

Further, there have been extensions of MF to incorporate user and item side information such
as [Stern et al., 2009] , which we refer as Matchbox model. Matchbox defines the recommendation
matrix as

ˆR(q) = (AXU)T(BXI) (2.3)

where, A 2 Rk⇥(m+du), B 2 Rk⇥(n+di), XU
2 R(m+du)⇥m, and XI

2 R(n+di)⇥n. Here, XU

composed of users features and one-hot encoding of the user index as shown in Figure 2.2. Similarly, XI

composed of item features and one-hot encoding of the item index. Intuitively, Matchbox embeds the
user and item side information to the k dimensional latent space. Matchbox corresponds to MF model if
only one-hot encoding of user and item indices are used as features.

One of the fundamental limitation of MF based methods is that the problem is non-convex, hence
susceptible to local minima. Furthermore, the recommendations are based on latent factors and are not
easily interpretable [Zhang et al., 2014] as in neighbourhood methods.

2.4 Collaborative filtering scenarios

In a real-world recommendation task, there arise various scenarios based on data sources and problem
setting. In this dissertation, we discuss four prevalent scenarios, as discussed in Section 1.1:

2.4.1 Explicit feedback CF

Explicit feedback CF concerns with the prediction of users’ actual preferences such as rating, like/dislikes.
From here onwards, we use the term “rating” to refer explicit feedback. We discuss various CF models
for explicit feedback scenarios :

2Typically, one also includes user- and item- bias terms in the recommendation matrix. We omit these for brevity.

12 Overview of Recommender Systems

KNN models

User-based KNN [Herlocker et al., 1999, Bell and Koren, 2007] defines the rating prediction as
weighted sum of the ratings given by users’ neighbours.

ˆRui =
Âv2Nk(u,i) Suv(Rvi � bvi)

Âv2Nk(u,i) Suv
(2.4)

where Nk(u, i) is the set of k-nearest neighbours, as defined by S, of user u who have rated the
item i.

Item-based KNN [Sarwar et al., 2001] defines the rating prediction as weighted sum of the rating of
the similar items.

ˆRui =
Âi2Nk(u,i) Sij(Ru,j � buj)

Âj2Nk(u,i) Sij
(2.5)

where Nk(u, i) is a set of k-nearest neighbour of item i which is rated by the user u.

MF models

For rating prediction [Salakhutdinov and Mnih, 2008b, Koren et al., 2009], one typically sets Jui =

JRui > 0K in equation 2.1 , so that one only considers (user, item) pairs with known preference infor-
mation. The MF model [Salakhutdinov and Mnih, 2008b] for rating prediction optimises

min

A,B
Â

u2Ui ,i2Iu

(Rui � AT
u Bi)

2 +
l

2

(||A||

2

F + ||B||2F) (2.6)

Additionally, biased matrix factorisation (Biased-MF) [Koren et al., 2009] incorporates a global,
user, and item bias by optimising

min

A,B
Â

u2Ui ,i2Iu

(Rui � b � bu � bi � AT
u Bi)

2 +
l

2

(||A||

2

F + ||B||2F), (2.7)

where b, bu, bi are global, user and item bias respectively.
Most recently, [Lee et al., 2013] proposed Local Low Rank Matrix Factorisation (LLORMA), an

ensemble MF algorithm that minimises the squared error weighted by the proximity of user-item pair to
a predefined point called anchor point. Formally, it minimises

min

A,B
Â

(u⇤

,i⇤)2Q
K((u, i), (u⇤

, i⇤))(Rui � AT
u Bi)

2 +
l

2

(||A||

2

F + ||B||2F), (2.8)

where K((u, i), (u⇤

, i⇤)) is a two-dimensional smoothing kernel that measures the proximity of tar-
get point (u, i) to the anchor point (u⇤

, i⇤); Q is a set of anchor points. In general, it learns local matrix
factorisation model with respect to each anchor point. Finally, given q different anchor points, the rating
is estimated as a linear combination of predictions from each model.

2.4.2 One-class CF

One-Class Collaborative Filtering (OC-CF) [Pan et al., 2008] concerns suggesting relevant items to users
from the data that consists of positive only preferences such as item purchase. In this dissertation, we use

§2.4 Collaborative filtering scenarios 13

the term “purchase” to refer one-class feedback in general. We discuss various CF models for OC-CF
scenarios :

KNN models

User-based KNN predicts the users’ preferences on items as:

ˆRui = Â
v2Nk(u,i)

Suv (2.9)

where Nk(u, i) is a set of k-nearest neighbour of user u who also purchased the item i.

Item-based KNN [Linden et al., 2003] predicts the users’ preferences on items as:

ˆRui = Â
j2Nk(u,i)

Sij (2.10)

where Nk(u, i) a set of k-nearest neighbour of item i that are purchased by user u.

Note that unlike rating prediction(as in Equation 2.4 and 2.5), we do not normalise the score. This is
mainly because we are concerned with the relative scores in OC-CF setting.

Sparse Linear Methods (SLIM)

As an alternative to neighbourhood methods for OC-CF, Sparse linear Methods (SLIM) [Ning and
Karypis, 2011] directly learns an item-similarity matrix W 2 Rn⇥n via

min

W2C
||R � RW||

2

F +
l

2

||W||

2

F + µ||W||

1

where C = {W 2 Rn⇥n
: diag(W) = 0, W � 0},

(2.11)

where l, µ > 0 are appropriate constants. Here, || · ||
1

denotes the elementwise `
1

norm of W so as
to encourage sparsity, and the constraint diag(W) = 0 prevents a trivial solution of W = In⇥n. The
nonnegativity constraint encourages interpretability, but Levy and Jack [2013] demonstrated that good
performance can be achieved without it. Given a learned W, SLIM produces a recommendation matrix

ˆR(q) = RW.

Thus, SLIM is equivalent to an item-based neighbourhood approach where the similarity matrix
S = W is learned from data. Although SLIM has a convex learning objective, it is item-focused which
hampers it predictive performance. Similarly, it involves constrained optimisation, which limits fast
training.

MF models

For OC-CF, we cannot set the weighting matrix Jui = JRui > 0K for MF objective shown in equa-
tion 2.1, as one will simply learn on the known positive preferences, and thus predict Rui = 1. An
alternative is to set Jui = 1 uniformly. This treats all absent purchases as indications of a negative pref-
erence. The resulting approach is termed PureSVD in [Cremonesi et al., 2010], and has been shown to
perform surprisingly well in top-N recommendation task for both explicit and implicit feedback datasets
[Cremonesi et al., 2011].

14 Overview of Recommender Systems

As an intermediate between the two extreme weighting schemes above, the WRMF method [Pan
et al., 2008, Hu et al., 2008] sets Jui to be

Jui = JRui = 0K+ a · JRui > 0K (2.12)

where a assigns an importance weight to the observed preferences. WRMF uses Alternating Least
Squares (ALS) method for optimization. The solution for A and B in each step of ALS is given by
(2.13)

A
:u = (BJUBT + lI)�1BJURT

u:

B
:i = (AJIAT + lI)�1AJIR

:i
(2.13)

where JU
2 Rn⇥n and JI

2 Rm⇥m are diagonal matrices such that JU
ij = Jui and JI

uu = Jui. In each
iteration of ALS, due to the weighting, we need to compute the inverse for each user and item as shown
in (2.13). This makes WRMF computationally expensive compared to using uniform weights.

[Tang and Harrington, 2013] proposed a randomised SVD based method to scale uniformly weighted
MF for OC-CF on large-scale datasets. The proposed method involves computation of rank-k ran-
domised SVD of the matrix R (as discussed in Appendix A).

R ⇡ PkSkQT
k (2.14)

where Pk 2 Rm⇥k, Qk 2 Rn⇥k and Sk 2 Rk⇥k. Given the truncated SVD solution, they initialize the
item latent factor with the SVD solution and solve

argmin

A

���R � ATB
���

2

F
+ l

k

A
k

2

F s.t. B = S
1

2

k QT
k (2.15)

Similarly, if the matrix A is fixed instead of the matrix B, the objective becomes

argmin

B

���R � ATB
���

2

F
+ l

k

B
k

2

F s.t. A = PkS
1

2

k (2.16)

We refer to (2.16) and (2.15) as U-MF-RSVD and I-MF-RSVD respectively.

Bayesian Personalised Ranking (BPR)

An alternate strategy to adapt matrix factorisation techniques to the OC-CF is the Bayesian Personalised
Ranking (BPR) Rendle et al. [2009]. BPR optimises a loss over (user, item) pairs, so as to ensure that
the known positive preferences score at least as high as the unknown preferences:

min

q
Â

u2U,i2R(u),i0/2R(u)
`(1,

ˆRui(q)� ˆRui0(q)) + W(q), (2.17)

where `(1, v) = log(1 + e�v) is the logistic loss, and ˆR is as per Equation 2.2. Intuitively, this forces
the scores for items with unknown preferences below that of an item with a positive preference (which
are anyway not relevant for the purposes of future recommendation). For each user, the objective can be
seen as maximisation of a surrogate to (a scaled version of) the area under the ROC curve (AUC) over
items. The AUC is the probability of a random relevant item scoring higher than a random positive item,
and is a popular measure of performance given binary relevance judgments [Fürnkranz and Hüllermeier,
2010, pg. 6]. While the objective has a quadratic complexity in the number of items, stochastic gradient

§2.4 Collaborative filtering scenarios 15

optimisation is feasible; nonetheless computational complexity remains a concern with such pairwise
ranking approaches.

Gantner et al. [2012] proposed an extension of BPR that normalises the loss for each user,

min

q
Â

u2U,i2R(u),i0/2R(u)

1

|R(u)|
· `(1,

ˆRui(q)� ˆRui0(q)) + W(q).

This can be seen to be more appropriate than Equation 2.17 in scenarios where we want to ensure good
recommendations for the average user, i.e. the model is user-focused.

2.4.3 Cold-start CF

Cold-start problem [Schein et al., 2002] refers to the scenario when we do not have any historical pref-
erence data about the users or items under consideration for recommendation. This proves a challenge
for CF algorithms that explicitly rely on such information to make personalised recommendations. In
such scenarios, user and item side information [Zhang, Zi-Ke et al., 2010, Sahebi and Cohen, 2011, Ma
et al., 2008a, Cao et al., 2010, Jamali and Ester, 2010, Krohn-Grimberghe et al., 2012] are leveraged to
make personalised recommendation.

Formally, in a standard cold-start setting, we have set of users with historical preference data, U(tr)

, referred as warm start users, and target cold-start users U(te) . Let X 2 Rm⇥d refer to user metadata,
and X(tr)

, X(te) be the metadata for the warm- and cold-start users respectively. There are two classes of
model that leverages side-information for cold-start recommendation:

Neighbourhood based cold-start CF

Neighbourhood based cold-start CF [Zhang, Zi-Ke et al., 2010, Sahebi and Cohen, 2011] uses metadata
to compute user-user or item-item similarity, and makes recommendation as discussed in 2.3.1. We will
discuss the neighborhood based cold-start CF in detail in Chapter 4.

MF based cold-start CF

MF based cold-start CF [Krohn-Grimberghe et al., 2012] borrows the idea from collective matrix fac-
torisation (CMF) [Singh and Gordon, 2008] for cold-start recommendation and optimises

min

A,B,Z
||R � AB||2F + µ||X � AZ||2F + lA||A||

2

F + lB||B||2F + lZ||Z||2F (2.18)

where A 2 Rm⇥k
, V 2 Rk⇥n, and Z 2 Rk⇥d for some latent dimensionality k ⌧ min(m, n). The

intuition for this approach is that it finds a latent subspace A for users that is jointly predictive of both
their preferences and social characteristics. We then predict

ˆR(te) = A(te)B. (2.19)

Another popular cold-start approach is the two-step model BPR-LinMap [Gantner et al., 2010]. Here,
the first step is to model the warm-start users by R(tr)

⇡ A(tr)B, with latent features A(tr)
, B as before.

The second step is to learn a mapping between the metadata X(tr) and latent features A(tr) using e.g.
linear regression,

A(tr)
⇡ X(tr)T (2.20)

16 Overview of Recommender Systems

u
v

mm SF
r

i

e

n

d

s

h

i

p

�

G

r

a

p

h

SM
e

s

s

a

g

e

�

G

r

a

p

h

ST
a

g

�

G

r

a

p

hSL
i

k

e

�

G

r

a

p

h

u
v

mm Sso
c

Figure 2.3: Aggregation of the social features.

for T 2 Rd⇥k. We then estimate the cold-start latent features A(te) = X(te)T, and use Equation 2.19 for
prediction.

2.4.4 Social CF

Social-CF is an emerging field in recommender systems research. Social-CF concerns about leverag-
ing social signals from online social networks for a recommendation. The fundamental assumption in
Social-CF is that users’ choices are not only influenced by personal preferences but also by interpersonal
factors, such as friend groups. Recent findings from social science research also reinforce the impor-
tance of social influence in user preferences. For instance, [Brandtzg and Nov, 2011] found that the
real-world interactions correlate with the strength of ties while virtual interactions reveal interest. Sim-
ilarly, people who interact frequently tend to share similar interests [Singla and Richardson, 2008] and
level of user interactions correlate with the positive ratings that they give each other [Anderson et al.,
2012].

The signals from online social networks range from simple user-user interaction to complex rela-
tions and interactions. In general, social networks are composed of two components, the Social graph,
which consists of user-user relationship, such as friendship, and the Interest graph, which consists of
user preferences and interests such as page likes, group membership. In general, Social-CF extends MF
model and leverages user-user social relation, Ssoc

2 Rm⇥m, defined by aggregating different social sig-
nals. In Figure 2.3, we show aggregation of social signals into Ssoc from various user-user social signals,
such as SFriendship�Graph, which refers to user-user friendship relationship; SMessage�Graph, which refers
to the communication graph; STag�Graph, which indicates whether users are tagged in same photo; and
SLike�Graph, which indicates whether users have shared likes, i.e

Ssoc = F(SLike�Graph
, STag�Graph

, SMessage�Graph
, ..., SFriendship�Graph) (2.21)

where F is some aggregation function. In general, Ssoc is incorporated in MF framework by adding a
social loss component, Lsocial [Cui et al., 2011, Yang et al., 2011a, Ma et al., 2011a, Li and Yeung,

§2.5 Evaluation of recommender systems 17

2009a] to MF objective. In other words, Lsocial acts as a regulariser to MF objective.

Lsocial = `(Ssoc
uv , A) (2.22)

For instance, [Ma et al., 2011a, Li and Yeung, 2009a] used friendship relation and defined Lsoc

Lsocial =Â
u

Â
v2N(u)

Ssoc
uv k

Au � Avk
2

where N(u) is a set of friends of user u.
As an alternative to social regularisation, [Ma et al., 2008a] formulated social recommendation as a

co-factorisation problem

min

A,B
Â
u,i
(Rui � AT

u Bi)
2 + Â

u,v
(Ssoc

uv � AT
u Zi)

2 +
l

2

(||A||

2

F + ||B||2F + ||Z||2F) (2.23)

Similarly, [Ma et al., 2009a] proposed a model that predicts rating as a weighted average of users’
and her friends rating, and minimises

min

A,B
Â
u,i
(Rui � (aAT

u Bi + (1 � a) Â
v2N(u)

AT
v Bi)

2 (2.24)

Most recently, [Noel et al., 2012] proposed a social extension to Matchbox, as defined in Equation 4.5.
We refer this model as Social Matchbox (SMB). It optimises

min

A,B
Â

u2Ui ,i2Iu

(Rui � (AxU
u)

T(BxI
i))

2 +
lS

2

Â
u,v

(Ssoc
uv � (AxU

u)
T(AxU

v))
2 +

lA

2

||A||

2

F +
lB

2

||B||2F

(2.25)
where xU

u and xI
i are the corresponding side-information, as shown in Figure 2.2, for the user u and

item i respectively.
In general, the key limitation of existing Social-CF methods is that they do not leverage fine-grained

social interactions. Instead, they use Ssoc, an aggregation of all social signals into a single numeric value,
limiting the full exploitation of the available social data.

2.5 Evaluation of recommender systems

The evaluation of a model is of critical importance while developing machine learning systems. Evalua-
tion allows to quantify the performance of the model. In general, there are two broad categories of model
evaluation, namely online and offline evaluation. Online evaluation concerns with comparing different
models in a production environment by directly collecting feedback from the users such as A/B testing.
On the other hand, offline evaluation concerns with evaluating the models used the gathered data by
dividing it into train and test set. Although online testing is desirable, it is expensive and most impor-
tantly requires access to the production system. Hence, in this dissertation, we use offline evaluation to
evaluate the models.

In this section, we introduce various rating and ranking metrics used throughout this dissertation to
evaluate the models.

18 Overview of Recommender Systems

2.5.1 Error based metrics

Error based metrics evaluate the prediction accuracy, and are widely used to access the performance of
recommender system for rating prediction. In this dissertation, we use the two most widely used metrics:

Mean Absolute Error (MAE) measures how close the predicted value is from the ground truth in
magnitude

MAE(R,

ˆR) =
1

|R|

Â
u,i

|Rui � ˆRui|

where |R| is the number of observed entries in R.

Root Mean Square Error (RMSE) penalises large errors more compared to MAE. RMSE was popu-
larised in recommender systems evaluation by the Netflix competition [Bennett et al., 2007b].

RMSE(R,

ˆR) =

s
1

|R|

Â
u,i
(Rui � ˆRui)2

2.5.2 Ranking metrics

Ranking metrics evaluates the quality of the recommended list, and are widely used to evaluate the per-
formance of recommendation models. In this dissertation, we use the three most widely used ranking
metrics: precision@k, recall@k, and mean Average Precision@k. Let, Irec

u be the sorted list of recom-
mended items for a user u.

Precision@k measures the fraction of relevant items in the top-k recommended list, and is defined as

precision@k(u) =
|Iu \ Irec

u [: k]|
k

precision@k =
m

Â
u=1

precision@k(u)
m

Recall@k measures the fraction of the relevant items that are present in the top-k recommended list,
and is defined as

recall@k(u) =
|Iu \ Irec

u [: k]|
|Iu|

recall@k =
m

Â
u=1

recall@k(u)
m

mean Average Precision@k (mAP@k)

3 is another widely used metric to evaluate recommender sys-
tems. Unlike precision@k and recall@k, mAP@k considers ordering of the items in the recom-
mended list by giving more importance to the item at the top of the list. Formally, it is defined

3As defined in https://www.kddcup2012.org/c/kddcup2012-track1/details/Evaluation.

https://www.kddcup2012.org/c/kddcup2012-track1/details/Evaluation

§2.6 Summary 19

as

ap@k(u) =
k

Â
i=1

precision@i(u)
min(|Iu|, |Irec

u [: i]|)

mAP@k =
m

Â
u=1

ap@k(u)
m

.

Mean average precision approximates the area under the precision-recall curve for each user [Man-
ning et al., 2008].

2.6 Summary

This chapter reviewed the foundations of recommender systems research. We formally defined recom-
mendation problem and discussed various recommendation algorithms and their limitations. From here
onwards, each chapter focuses on formulating new algorithms for various CF scenarios, addressing the
limitations of the existing algorithms.

20 Overview of Recommender Systems

Chapter 3

Linear Models for Social
Recommendation

In this Chapter, we delve into Social Collaborative Filtering (Social-CF), one of the prevalent CF sce-
narios, as discussed in Chapter 2. We highlight the limitations of the existing methods and formulate
a novel Social-CF algorithm using linear models addressing the key limitations. The insights from this
chapter will serve as a foundation for cold-start recommendation, another CF scenario, which we will
discuss in the following chapter.

3.1 Problem statement

In this Chapter, we are concerned with predicting whether user u likes an item i or not. The historical
preference data consist of explicit likes and dislikes i.e. we have partially observed user item preference
data R 2 {0, 1}

m⇥n, where 1 indicates like and 0 indicates dislike. Further, we have rich social network
data of the corresponding users and their friends. Unlike the classical recommendation setting, such as
movie recommendation, in many real world scenarios the items can be highly heterogeneous. For in-
stance, Facebook recommends us the links liked by friends, where the link can be a hyper-link to videos,
blog posts, and news articles. In such heterogeneous settings, the number of items for recommendation
can be large, leading to the data sparsity problem. Hence, it is critical to leverage user side information.
In this Chapter, we focus on formulating models that leverage users’ social network data.

3.2 Background

In this Chapter, we investigate Social-CF algorithms in the context of the Facebook social network.
Online social networks such as Facebook record a rich set of user preferences (likes of links, posts, pho-
tos, videos), user traits, interactions and activities (conversation streams, tagging, group memberships,
interests, personal history, and demographic data). The availability of rich labelled graph of social inter-
actions and contents presents a myriad of new dimensions to the recommendation problem. The users’
signals from a social network range from simple user-user signals to complex information that spans
across the network. However, most existing Social-CF methods, as discussed in section 2.4.4, aggregate
the rich fine-grained social signals into a simple measure of user-to-user interaction [Cui et al., 2011,
Yang et al., 2011a, Ma et al., 2011a, Li and Yeung, 2009a, Noel et al., 2012]. But by aggregating all of
these signals into a single strength of interaction, we discard rich fine-grained social signals, as we will
show in this chapter. Further, the existing methods extend Matrix Factorisation (MF) models, which are
inherently non-convex and hard to interpret, as discussed in Section 2.3.2.

21

22 Linear Models for Social Recommendation

Acronyms Meaning
SAF Social Affinity Filtering Algorithm
ISAF Interaction Social Affinity Features
ASAF Activity Social Affinity Features
Symbols Meaning
R User-Item preference data
X Users’ social signals (interactions/activities)
f Social Affinity Features
H Conditional Entropy

Table 3.1: Symbols and Acronyms used for Social Affinity Filtering.

In this work, we take a departure from the existing approaches and formulate a Social-CF algorithm,
Social Affinity Filtering (SAF), using convex linear models that directly leverages fine-grained social
signals for the recommendation. Further, we will also show how leveraging social signals can mitigate
the cold-start problem.

User%u%

Social%Affinity%
Group%%

Link%i%
Like?%

Like/Dislike%

Interac:ons%
and%
Ac:vi:es%

Interac:ons%

Ac:vi:es%

{link,%post,%photo,%video}%×%{like,%tag,%comment}%×%{incoming,%outgoing}%

Groups% Pages% Favourites%

Figure 3.1: A typical recommender system uses only ”like/dislike” data for recommendation, whereas,
social recommender systems seek to leverage users’ social network data to predict their preferences.

3.3 Social affinity filtering

In this section, we define various social signals and social features, namely social affinity features. We
then formulate Social-CF as a linear classification problem, Social Affinity Filtering (SAF), that leverages
fine-grained social affinity features. The key idea behind SAF is that the fine-grained social signals are
predictive of users’ preferences. For instance, user u who has liked Justin Bieber Facebook page might
have similar taste as other Justin Bieber fans. Now, we proceed to formalising Social Affinity Filtering
(SAF). In Table 3.1, we summarise the additional symbols and acronyms defined in this chapter.

3.3.1 Social signals

In this work, we define two different types of social signals in a social network. We use the term
interactions and activities to refer to the range of user-user and user-community action, respectively.

§3.3 Social affinity filtering 23

User%u%

Social%Affinity%
Group%%

Link%i%
Like?%

Like/Dislike%

Interac:ons%
and%
Ac:vi:es%

Interac:ons%

Ac:vi:es%

{link,%post,%photo,%video}%×%{like,%tag,%comment}%×%{incoming,%outgoing}%

Groups% Pages% Favourites%

Figure 3.2: Overview of Interactions and Activities in Facebook social network.

Interactions

Interactions describes communication between users u and v in a social network. In the context of
Facebook, it can be broken down into three dimensions:

• Modality: (4 possibilities) User u can interact with another user v via links, posts, photos and
videos that appear in either user’s timeline. We define a modality set as

M = {links, posts, photos, videos}.

• Action type: (3 possibilities) A user u can comment on or like user v’s item. He/she can also
tag user v on an item, often indicating that user v is present when the content is created (for
photo/video/post), or to explicitly raise user v’s attention for a post — with one exception in
Facebook that u cannot tag a link with users. We define an action type set as

A = {comment, like, tag}.

• Directionality: (2 possibilities) We look at incoming and outgoing interactions, i.e., if user u com-
ments on, tags, or likes user v’s item, then this is an outgoing interaction for u, and an incoming
interaction for v. Hence, we have directionality set as

D = {incoming, outgoing}.

Although high correlation between incoming and outgoing interactions has been observed [Saez-
Trumper et al., 2011], whether interaction direction affects user preferences differently is still an
open question we wish to answer in this work.

Based on above defined interaction types, we define Interaction-Classes as:

Interaction-Classes := M⇥A⇥D.

Overall there are 22 possible interaction types, namely the cross-product of modalities, actions and
directions, minus the special cases of link-tag-{incoming, outgoing} since links cannot be tagged.

24 Linear Models for Social Recommendation

For each k 2 Interaction-Classes, we define Interaction-Features Xk
2 Rm⇥m as:

Xk
uv =

8
<

:
1 user v has had interaction k with u

0 otherwise.

Activities

Activities are user interactions with Facebook communities like groups, pages, and favourites. We
discuss each in turn

• Groups on Facebook 1 are analogous to real-world community organisations. They allow users
to declare membership and support people to organise activities, to post related content, and to
have recurring discussions about them. Examples of groups include Stanford Thai (Fig 3.2 left),
or Harvard Debate Club. We denote set of all groups with E(g).

• Pages on Facebook 2 are analogous to the homepages of people, organisations and events on the
world-wide-web. They are publicly visible, and users can subscribe to the updates on the page,
and also engage in discussions. Example pages include DARPA (an organisation, Fig 3.2 middle),
or Beyonce (a singer). We denote set of all pages with E(p).

• Favourites are analogous to bookmarks (on physical books or on the web browser). They are a
user-created list containing various items such as Facebook apps, books, music, and many other
types of items (even pages) to indicate their interest. Example favourites include Big Bang Theory
(TV series), or FC Barcelona (soccer club). Fig 3.2 right shows a Facebook screenshot when a
user adds a favourite. 3. We denote set of all favourites with E(f) .

Based on the above acitivity types, we define

Activity-Groups = {groups, pages, f avourites}.

For each k 2 Activity-Groups, we define Activity-Features Xk
2 Rm⇥d as:

Xk
ua =

8
<

:
1 user u has taken part in activity a of the k Activity-Group

0 otherwise

where a 2 E(k).

1From Facebook Blog: http://www.facebook.com/blog/blog.php?post=324706977130, “Groups are the place for small
group communication and for people to share their common interests and express their opinion. Groups allow people to come
together around a common cause, issue or activity to organise, express objectives, discuss issues, post photos and share related
content.”

2From Facebook Blog: (http://www.facebook.com/blog/blog.php?post=324706977130 “Facebook Pages enable public fig-
ures, businesses, organisations and other entities to create an authentic and public presence on Facebook. Facebook Pages are
visible to everyone on the Internet by default. Facebook users can connect with these Pages by becoming a fan and then receive
their updates and interact with them.”

3According to Facebook Blog, (https://www.facebook.com/help/232262810142682 “Facebook facilitates a wide variety of
user selected favourites (Activities, Favorite Athletes, Books, Interests, Movies, Music, Sports, Favorite Teams, Television).
These favourites allow a user to associate themselves with other people who share their same favourite tendencies.”

http://www.facebook.com/blog/blog.php?post=324706977130
http://www.facebook.com/blog/blog.php?post=324706977130
https://www.facebook.com/help/232262810142682

§3.3 Social affinity filtering 25

3.3.2 Social affinity features from social signals

With Interaction- and Activity-features now defined, we use them to build features for a classification-
based approach to social recommendation that we term Social Affinity Filtering (SAF). In SAF, our goal
is to predict Rui for user u and item i. For this task, we use interaction and activity features to define
corresponding Social Affinity Features as proxies for Rui. Formally, we define such features as follows:

• Interaction social affinity features (ISAFs): We define ISAF, fk
ui, for user u, item i and interac-

tion k 2 Interaction-Classes as :

fk
ui = Â

v2{U�u}
Rvi · Xk

uv (3.1)

In this work, we binarise fk via Jfk
ui > 0K. In short, fk

ui is 1 if any user sharing interaction k with
u liked i. Here, v is implicitly limited to u’s Facebook friends (with whom u may interact).

• Activity social affinity features (ASAFs): We define ASAF, fa
ui, for user u, item i and k 2

Activity-Group as :

fa
ui = Xk

ua · Â
v2{U�u}

Rvi · Xk
va (3.2)

where a 2 E(k).

Like ISAF, we binarize fa
ui via Jfa

ui > 0K. In short, fa
ui is 1 if both u and some other v are a

member of the activity a and v has liked i. Here, v may range over all Facebook users, i.e., v need
not be a friend of u to share the same public activity k.

The choice of binary ISAFs and ASAFs is mainly due to the superior performance compared to
non-binary features in our experiments.

3.3.3 Recommendation model

Given ISAFs and ASAFs, we combine both features to construct feature vector fui. Social Affinity
filtering (SAF) is then simply a linear classification model

F : fui ! Rui

Given a dataset of historical observations D = {fui, Rui}, we can train F using any existing classifica-
tion method; in this work we consider linear classifiers trained by an SVM, logistic regression, or naïve
Bayes. For prediction, given user u and item i, we build the feature vector xui and predict Rui = F(xui)

using the trained classifier F.4 In Fig 3.3, we overview the SAF training data.

3.3.4 Model analysis

• SAF is equivalent to weighted nearest centroid algorithm, where weights are learned via linear
models.

4Since most classification methods provide a score (or probability) of a classification, we can also generate the top-n item
recommendations for a user u by sorting items by their score.

26 Linear Models for Social Recommendation

1 0

0 0

1 1

0 1

u
1
, i

5

U
s

e
r-

It
e

m u1
, i

8

u
2
, i

5

u
2
, i

7

Social Affinity Features

 .
 .
 .

ISAF ASAF (Page)

0 0 1

0 0 0

0 1 0

1 0 0

0 0

li
n

k
-l

ik
e
-i

n
c
o

m
in

g

li
n

k
-l

ik
e
-o

u
tg

o
in

g

F
ri

e
n

d
 l
ik

e
d

. . .

0 1

1 0

0 1

1 0

1 0
v
id

e
o

-t
a
g

-o
u

tg
o

in
g

 .
 .
 .

B
ig

 B
a
n

g
 T

h
e
o

ry

F
a
c
e
b

o
o

k

S
h

a
k
ir

a

0 0

0 0

1 1

1 0

A
N

U
 C

E
C

S

I
L

o
v
e
 C

a
n

b
e
rr

a

. . .

0 0 1 0 0

1

0

1

1

0u
90

, i
65

L
ik

e
 /
 D

is
li
k
e
 ?

Figure 3.3: SAF training data example: each row corresponds to a training data sample for a specific
user-item pair (u, i) for which the prediction target fui is observed (last column). All other columns
represent the value of ISAF or ASAF features evaluated relative to the (u, i) label of each row. All
columns are binary-valued (0, 1).

To better understand the SAF recommendation model, we analyse SAF using activity features, fa
ui, for

an activity k, as defined in Equation 3.2. The linear model learns to predict

ˆRui = Â
a

fa
ui · wa

= Â
a

Xk

ua · Â
v2{U�u}

Rvi · Xk
va

!
wa

= Â
a

Xk

ua · wa · Â
v2{U�u}

Rvi · Xk
va

!
(3.3)

where wa represent learned weights on activity, say pages. Intuitively, the model can be understood as
performing linear regression on a feature representation, fa

ui that is joint for users and items.

Further, Equation 3.3 can be written in a matrix form as

ˆR = Xdiag(wa)XTR (3.4)

Equation 3.4 corresponds to metadata based weighted nearest centroid classifier [Manning et al.,
2008], where the weights are learned via linear regression. However, as a downside, the proposed model
shares the weights, wa, for all users. Hence, the proposed method might be lacking on personalisation.

3.4 Experiment and evaluation

In this section, we discuss the dataset used for experiments, experimentation methodology, and report a
detailed analysis of the proposed model.

§3.4 Experiment and evaluation 27

App Users Ego network of
App Users

Male 85 20,840
Female 34 17,032
Total 119 37,872

Table 3.2: App user demographics. The ego network is the friend network of the App users.

App Users Tags Comments Likes
Post 7,711 22,388 15,999
Link — 7,483 6,566
Photo 28,341 10,976 8,612
Video 2,525 1,970 843
Ego network Tags Comments Likes
of App Users
Post 1,215,382 3,122,019 1,887,497
Link — 891,986 995,214
Photo 9,620,708 3,431,321 2,469,859
Video 904,604 486,677 332,619

Table 3.3: Statistics on user interactions.

App Users Ego Network
of App Users

Groups 3,469 373,608
Page Likes 10,771 825,452
Favourites 4,284 892,820

Table 3.4: Statistics on user actions, counted for Groups, Pages and Favourites over the App users and
their ego network.

3.4.1 Data description

We built a Facebook App that recommend links to the users everyday, where the users may give their
feedback on the links indicating whether they liked or disliked it. For the app users, we also collected
the detailed user interaction and activity history available through the Facebook Graph API. The data
collection was performed with full permission from the user and in accordance with an approved Ethics
Protocol #2011/142 from the Australian National University.

Our App requested to collect information on profiles (including activity memberships) and timelines
(interactions) for the App users and their friends as required by Sec 3.3.2. With such expressive permis-
sions, many potential users were hesitant to install the App — after an intensive one month user drive at
our University, we were able to attract 119 App users allowing us to collect activity and interaction data
for a combined 37,872 users.5

We summarise basic statistics of the data in Tables 3.2–3.5. Table 3.2 presents user and friend
demographics. Table 3.3 summarises the number of records for each item modality (row) and action
(column) combination. Table 3.4 shows the group membership, page like and favourite counts for users.

Our App recommends three links to App users each day, which the users may optionally like or
dislike. Recommended links are harvested from both friends’ and non-friends’ timelines. We display

5The issue of low App user uptake with such expressive App permissions underscores the importance of identifying the
minimal set of permissions to obtain good recommendation performance — a question we address in our subsequent analysis.

28 Linear Models for Social Recommendation

Friend Non-Friend
recommendation recommendation

Like 1392 1127
Dislike 895 2111

Table 3.5: Dataset breakdown of prediction target like(u, i) by the source of the link (Friend/Non-friend)
and rating.

only three links per day in order to avoid rank-bias with preferences; each link could be independently
rated. Table 3.5 shows App user link preference statistics.

All subsequent experiments use offline batch data stored and analysed after a four month data col-
lection period.

3.4.2 Model comparision

In this section, we compare novel SAF-based methods with a variety of (social) collaborative filtering
baselines:

1. Most Likely Class Constant Predictor (Const)

2. Nearest Neighbor (NN), as defined in Equation 2.5

3. Matrix Factorisation (MF) [Salakhutdinov and Mnih, 2008b], as defined in Equation 2.8

4. Social Matchbox (SMB) [Noel et al., 2012], as defined in Equation 2.25

Here, Const serves as a lower bound on performance, NN and MF are two well-known state-of-the-art
non-social collaborative filtering algorithms, and SMB is a state-of-the-art social collaborative filtering
algorithm employing matrix factorisation with social regularisation.

Among the novel SAF methods, we analyse four different sets of social affinity features:

1. Interaction Social Affinity Features (ISAF)

2. Activity-based Social Affinity Features (ASAF) for

(a) Group Memberships

(b) Page Likes

(c) Favourites

Furthermore, for these four classes of features, we train one of three classifier types, leading to the
following classes of SAF recommenders evaluated in our experiments:

1. Naïve Bayes (NB-ISAF, NB-ASAF)

2. Support Vector Machines (SVM-ISAF, SVM-ASAF)

3. Logistic Regression (LR-ISAF, LR-ASAF)

NB uses a standard Naïve Bayes implementation, SVM and LR are both implemented using LIBLIN-
EAR [Fan et al., 2008].

In all experiments, we report average classification accuracy (fraction of correct classifications in
held-out test data) using 10-fold cross validation and provide standard error bars corresponding to 95%
confidence intervals.

§3.4 Experiment and evaluation 29

3.4.3 Performance analysis

Fig 3.4 compares the above baselines and SAF algorithms. In all of these experiments, SAF variants
performed statistically significantly better than the best baseline (SMB), except for NB-ASAF which we
conjecture is due to violation of feature independence assumptions that become more pronounced as the
number of features increases (n.b., NB-ISAF uses 22 features while NB-ASAF uses 1000’s of features).

C
o
n
s
t

N
N

M
F

S
M
B

N
B
-I
S
A
F

L
R
-I
S
A
F

S
V
M
-I
S
A
F

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

A
cc
u
ra

cy

Interaction

C
o
n
s
t

N
N

M
F

S
M
B

N
B
-A

S
A
F

L
R
-A

S
A
F

S
V
M
-A

S
A
F

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Group Membership

C
o
n
s
t

N
N

M
F

S
M
B

N
B
-A

S
A
F

L
R
-A

S
A
F

S
V
M
-A

S
A
F

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Page like

C
o
n
s
t

N
N

M
F

S
M
B

N
B
-A

S
A
F

L
R
-A

S
A
F

S
V
M
-A

S
A
F

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Favourite

Figure 3.4: Comparision of a simple baseline (Const), two collaborative filtering baselines (NN and MF),
a social collaborative filtering baseline (SMB) and novel SAF recommenders using different feature sets
(one ISAF and three ASAF sets) and classifiers (NB,LR,SVM). The best SAF-based model (LR-ASAF)
— for Page likes — significantly outperforms all baselines by at least 6%. Combining all four feature
sets (not shown) does not lead to improvement over Page likes features alone.

In terms of the best recommenders, we observe that LR-ASAF and SVM-ASAF perform comparably
to each other and learn quite well despite the large size of this ASAF feature set. Overall, LR-ASAF
performs 6% better than the best baseline for page likes. We combined all four features sets in a fifth
experiment (not shown) and remark that none of NB, LR, or SVM with all features outperformed LR-
ASAF with just page likes. We also note that all ISAF variants statistically significantly outperform all
(social) collaborative filtering baselines. Hence, w.r.t. this Facebook dataset, we conclude that (a) SAF
with any available feature set is sufficient to outperform existing (social) collaborative filtering baselines
and that (b) if one wanted to minimise the permissions an App requests then it seems SAF with page
likes alone is sufficient to outperform all other feature sets (alone or combined).

It is important to consider why ASAFs outperform ISAFs. We conjecture the reasons for this are
quite simple: ISAFs span across friends of user u whereas ASAFs span across the all users, independent
of u’s friends. Hence, given the relative sparsity of friend-only data in Facebook compared to the greater
Facebook population (at least the subset of the population the App collected) and also the relative number
of ISAFs compared to ASAFs, Among ASAFs, page likes are the most predictive followed by group
membership and favourites. This reinforces our conjecture that data sparsity can hurt SAF since we note
from Table 3.4 that page likes are more prevalent than groups and favourites.

Comparing SAF to the state-of-the-art in social collaborative filtering as represented by Social
Matchbox (SMB) [Noel et al., 2012], we observe that SAF consistently outperforms it. We note that
the key difference of SAF vs. SMB is that SAF exploits the predictiveness of fine-grained interactions
and activities, whereas most social collaborative filtering approaches [Cui et al., 2011, Li and Yeung,
2009b, Ma et al., 2009b, 2008b, 2011b, Noel et al., 2012, Yang et al., 2011b] instead collapse the diverse

30 Linear Models for Social Recommendation

set of interactions into a single aggregate statistic for each pair of users, as discussed in Section 2.4.4.
The performance of SAF-based recommenders suggests that the aggregation of all social information
into aggregate statistics (without learning which interactions or activities are most informative) may not
distinguish informative parts of the social signal from the noise.

On the computational side, we remark that SAF is implemented as a simple linear classifier that can
be used in conjunction with a variety of classification methods (e.g., naive Bayes, logistic regression,
SVM) and online training algorithms amenable to real-time, big data settings. Furthermore, the linear
classification methods used in SAF admit global convex optimisation w.r.t. a variety of training objec-
tives (e.g., log loss in logistic regression, or hinge loss in SVMs) unlike (social) collaborative filtering
approaches based on matrix factorisation that use non-convex objectives and lack training optimality
guarantees.

3.4.4 Cold-Start evaluation

Many collaborative filtering algorithms (e.g., NN and MF) suffer from the user cold-start problem, as
discussed in Section 2.4.3 .These algorithms cannot perform better than the constant (most likely class)
predictor since they have no way of generalising to a new unseen user. Since SAF trains a single model
for all users and does not require a user’s preferences in order to recommend for them, SAF can be used
in a cold-start setting to recommend for users without expressed item preferences as long as those users
have interactions or shared activities with users who have expressed item preferences.

. Constant LR-ISAF LR-ASAF(Groups) LR-ASAF(Pages) LR-ASAF(Favourites)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

Cold-Start

Non Cold-Start

Figure 3.5: Cold-start evaluation of SAF: accuracy evaluated on cold-start users outperforms the most
likely class (Constant) predictor baseline and is somewhat comparable to the non cold-start case when
all test user data is not withheld from training.

To quantitatively evaluate the cold-start performance of SAF, we run 10-fold cross validation with
specially constructed folds. For cold-start evaluation, in each fold, we hold out a random 10% subset
of the users for testing and train on the remaining 90% of users. In the test set, we further hold out
30% of the test user data. In the non cold-start evaluation, we test on the same data as in the cold-start
evaluation, but we add in the 30% of held-out test user data to the cold-start training set thus allowing the
non cold-start setting to train on some of the test user data. In Fig 3.5, we clearly see that the accuracy6 of
the SAF predictor for cold-start is significantly better than the baseline Constant predictor. Furthermore,
the accuracy of the cold-start predictor is actually comparable to the non cold-start predictor, indicating
that SAF exhibits strong cold-start performance.

§3.4 Experiment and evaluation 31

Table 3.6: Conditional entropy of various interactions (lower conditional entropies are more informa-
tive). We observe that interactions on videos are more informative than other modalities (link, post,
photo), tagging is marginally more informative than commenting and liking, and outgoing interactions
are slightly more informative than incoming ones. Breaking down the analysis by modality-direction
and action-direction reveals finer-grained distinctions.

Modality (f) H(R|f = 1)

video 0.850
link 0.915
post 0.918
photo 0.926

Action Type (f) H(R|f = 1)

tags 0.920
comments 0.921
likes 0.924

Direction (f) H(R|f = 1)

outgoing 0.928
incoming 0.935

Modality-Direction (f) H(R|f = 1)

tags-outgoing 0.885
likes-outgoing 0.885
tags-incoming 0.900
likes-incoming 0.902
comments-outgoing 0.908
comments-incoming 0.912

Action-Direction (f) H(R|f = 1)

photo-outgoing 0.857
video-outgoing 0.863
link-outgoing 0.895
link-incoming 0.896
post-incoming 0.902
post-outgoing 0.906
video-incoming 0.915
photo-incoming 0.921

1 2 3 4
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
on

di
ti
on

al
E
n
tr
op

y

Incoming

1 2 3 4
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Outgoing

LINK

POST

PHOTO

VIDEO

1 2 3 4
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
on

di
ti
on

al
E
n
tr
op

y

1 2 3 4
k

0.3

0.4

0.5

0.6

0.7

0.8

0.9 LIKES

COMMENTS

TAGS

Figure 3.6: Conditional Entropy of modalities/activities for incoming/outgoing interactions vs. item
liked by at least k friends. Increasing k generally has a stronger influence on informativeness than other
features of interactions.

32 Linear Models for Social Recommendation

3.4.5 Interaction analysis

In this section we analyse the informativeness of Interaction Social Affinity Features (ISAFs), namely
user interactions according to their modality, type, and direction, as described in Section 3.3.1.

A general method for measuring the amount of information that a feature fk
ui provides w.r.t. predict-

ing a user preference Rui (in this case, just 1 or 0) is to calculate its conditional entropy:

H(Rui = 1|fk
ui = 1) = � Â

y2(0,1)

p(Rui = y|fk
ui = 1) · ln(p(Rui = y|fk

ui = 1))+

p(Rui = y|fk
ui = 0) · ln(p(Rui = y|fk

ui = 0))

Lower conditional entropies generally indicate more informative features.
First we analyse various interactions to better understand what interactions have a high affinity with

a user’s preferences. To this end, we make a few observations from the conditional entropy analysis of
Table 3.6:

• Interaction on videos indicates a stronger preferential affinity between users than other modalities
(links, posts and photos). We conjecture this is because videos are time-consuming to view and
hence users mainly watch the videos of those users whose preferences they share.

• Tagging has a slightly better conditional entropy than commenting and liking, potentially since
tagging often results from direct social interaction (appearing in a photo or video together) indi-
cating common interests.

• A user is more likely to share preferences with someone who she initiates the interaction with
(outgoing) vs. with someone who initiates the interaction with her (incoming). E.g., we note that
while outgoing photo and video interactions are most informative in the last table of Table 3.6, it
appears that incoming photo and video interactions are least informative.

In Fig 3.6 we plot the conditional entropy of modality and action for incoming/outgoing interactions
constrained to links liked by at least k friends with the corresponding interaction We note that preference
affinity with any interaction increases as more people with the corresponding interaction like the item.
E.g., while incoming interactions were not as predictive as outgoing interactions for the same k, we note
that higher k on incoming can be more predictive than lower k for outgoing. Similar principles hold for
modality and action vs. k — a larger k is generally more predictive than the individual variation among
modality and action at a fixed k, an exception being the modality-outgoing analysis.

3.4.6 Activity analysis

Now we analyse the informativeness of Activity Social Affinity Features (ASAFs) by looking at the
correlation between the size and type of groups, pages and favourites.

Fig 3.7 provides scatter plots of conditional entropies and logistic regression weights vs. activity
group size.7 Both plots show that small activity groups can be highly predictive (low conditional entropy
or weights that deviate extremely from zero) whereas large groups are rarely predictive.

In Fig 3.8 we plot the average conditional entropy of the top 10% of features cumulative up to the
size of the activity group given on the x-axis. This graph distinctly shows that the small sizes of groups,

6The slight decrease in accuracy for non cold-start case compared to Fig 3.4 is due to the decreased amount of test user
data present in the training set for this set of experiments.

7Here the size of a group, page and favourite is the number of total users in the activity group. For pages and favourites
this is the total number of Facebook users, whether or not they are in the App users’ ego network, while for groups only the
number of users in the App users’ ego network is visible to our App.

§3.4 Experiment and evaluation 33

Median Informative Favourites by Category
Books Movies Music Television Interests
Harry Potter series Forrest Gump John Lennon Futurama Travel
A Song of Ice and Fire Pretty Woman U2 Star Trek Music
Discworld Napoleon Dynamite AC/DC The Trap Door Literature
Hitchhiker’s Guide To The Galaxy Harry Potter The Smashing Pumpkins Drawn Together Painting
The Hobbit Toy Story 3 Gotye Sherlock(Official) Running
The Magician’s Guild The Godfather The Rolling Stones Hitchhiker’s Guide to the Galaxy Sports
Ranger’s Apprentice Mulan All Axess Buffy The Vampire Slayer Films
Cosmos How to Train Your Dragon Steve Aoki South Park Genetics

Most Informative Favourites by Category
Books Movies Music Television Interests
Calvin and Hobbes Billy Madison Avascular Necrosis Metalocalypse Computers
Tomorrow when the War Began Team America: World Police Tortured Beast Wars Texas HoldEm
I really like ceilings Pan’s Labyrinth Elysian Hey Arnold! Programming
Angels and demons Pirates of the Caribbean Anno Domini Sherlock Economics
Magician Aladdin Darker Half Hey Hey It’s Saturday Martial arts
Digital Fortress Starship Troopers Hellbringer Neil Buchanan and Art Attack! Graphic design
The Bible Happy Gilmore Johnny Roadkill Breaking Bad Cooking
Interview with the Vampire Timon and Pumbaa Aeon of Horus Red vs. Blue Klingon language

Table 3.7: (top) Examples of 8 items per Favourite category near the median conditional entropy (me-
dian informativeness). (bottom) Examples of top 8 items with the lowest conditional entropy (most
informative). A general trend is that more informative favourite category activity tend to be more spe-
cialised in appeal, e.g. “Avascular Necrosis” is an informative music group favourite — its members
tend to share common preferences — while “John Lennon” and “U2” have a broader audience with
more diverse preferences. Interestingly, ”Sherlock” appears in both most and median informative table
but the median informative is an official page with wide range of fans, whereas the most informative is
a duplicate fan page with few fans.

pages and favourites have low average conditional entropy that transitions sharply to a higher average at
about 50 for groups and 10

5 for pages/favourites.

We also analyse predictiveness of favourites by categories obtained from the Facebook API in
Fig 3.9. While half of category instances in movie, books, or movies with “long-tail” (less popular,
specialised) content may not be highly predictive (judging by median informativess), these categories
do contain some highly predictive instances (as evidenced by the top two quartiles). On the contrary,
highly generic categories (e.g. interests) and those with fewer choices (e.g. sports or fav-teams) tend
to be less predictive overall. These observations of Fig 3.9 are also reiterated by the examples provided
in Table 3.7 where uninformative favourites tend to have a broad appeal whereas informative favourites
generally appear much more specialised. This reinforces the insight of SAF that it is important to learn
which activities are predictive.

One might ask how the number of activities a user joins affects recommendation performance. In
Fig 3.10, we see that on average, more user activities generally leads to higher accuracy. As an alter-
native analysis, Fig 3.3 shows performance vs. the number of active features, i.e., for any (user,item)
recommendation in a row of Fig 3.3, the active features are those that are true (1). Here we see that
excessive item popularity among activities hurts the discriminative power of SAF to make good recom-
mendations.

34 Linear Models for Social Recommendation

0 200 400 600 800
Group size

0.2

0.4

0.6

0.8

1.0

C
on

d
it
io
n
a
l
E
n
tr
op

y

0.0 0.5 1.0 1.5 2.0 2.5
Page size ⇥107

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6
Favourite size ⇥107

0.2

0.4

0.6

0.8

1.0

(a)

100 200 300 400 500 600 700 800
Group size

�0.4

�0.2

0.0

0.2

0.4

L
og

is
ti
c
R
eg

re
ss
io
n
W
ei
gh

t

0.0 0.5 1.0 1.5 2.0 2.5
Page size ⇥107

�1.5

�1.0

�0.5

0.0

0.5

1.0

0 1 2 3 4 5 6
Favourite size ⇥107

�1.0

�0.5

0.0

0.5

1.0

(b)

Figure 3.7: Conditional entropy vs. size (a); logistic regression feature weights vs size (b). In (a)
we observe that the activities with large membership are rarely informative while the most informative
activities tend to have low memberships. Similarly in (b) we see that the most predictive features with
the largest weights (positive or negative) are concentrated toward activities with small memberships.

101 102 103

Group size(Log)

0.582

0.584

0.586

0.588

0.590

0.592

0.594

0.596

C
o
n
d
it
io
n
a
l
E
n
tr
o
p
y

103 104 105 106

Page size(Log)

0.53

0.54

0.55

0.56

0.57

103 104 105 106 107

Favourite size(Log)

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Figure 3.8: Average conditional entropy of top 10% groups, pages and favourite features cumulative
over the size. Here we see that as we add in larger membership activities, the average informativeness
decreases substantially (entropy increases).

§3.5 Related work and discussion 35

INTERESTS ACTIVITIES TELEVISION BOOKS MUSIC FAV-TEAMS MOVIES FAV-ATHLETES SPORTS

0.2

0.4

0.6

0.8

1.0
C
o
n
d
it
io
n
a
l
E
n
tr
o
p
y

Figure 3.9: Conditional entropy for top 1000 favourites breakdown by categories. While at least half of
activity categories with many options like music are not informative (judging by median values), some
of the most informative activities are music. This reiterates the point that it is crucial to learn which
activities are informative rather than aggregating average information.

<10 10-50 >50
Number of groups joined

0.50

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

Groups

<10 10-50 >50
Number of pages liked

0.50

0.55

0.60

0.65

0.70

Pages

<10 10-50 >50
Number of favourites

0.50

0.55

0.60

0.65

0.70

Favourites

Figure 3.10: Accuracy of the SAF increases as users become more active in social network by joining
more groups/pages/favourites. It does not appear too many activities hurts — SAF learns to discriminate
when activities are predctive.

101 102

Number of active features

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy

Groups

101 102

Number of active features

0.4

0.5

0.6

0.7

0.8
Pages

101 102

Number of active features

0.4

0.5

0.6

0.7

0.8
Favourites

Figure 3.11: Accuracy increases as the number of active features increases, but then, after reaching a
certain limit, it starts to decrease, i.e., excessive item popularity among activities hurts the discriminative
power of SAF to make good recommendations.

3.5 Related work and discussion

This work relates to many others in inferring user preferences on social and information networks. We
structure the discussion into three parts: the first is concerned with the nature and observations on user

36 Linear Models for Social Recommendation

traits, interactions and diffusion mechanisms; the second is concerned with correlating these user traits
and interactions to user preferences and interests; the third is concerned with methods that use these
observations for predicting user interest or recommending content on social networks.

The first group of related work studies the nature of user profile, interactions, and diffusion. Profile
information and demographics is correlated with user behaviour patterns. Chang et al [Chang et al.,
2010] showed that the tendency to initiate a Facebook friendship differs quite widely across ethnic
groups, while Backstorm et al [Backstrom et al., 2011] have additionally showed that female and male
users have opposite tendencies for dispersing attention for within-gender and across-gender communica-
tion. Two particular measurement studies on Facebook attention [Backstrom et al., 2011, Wilson et al.,
2009] have inspired our work. Although the average number of friends for a Facebook user is close
to the human psychological limit, known as the Dunbar number [Hill and Dunbar, 2003], the findings
concur that a user’s attention (i.e., interactions) are divided among a much smaller subset of Facebook
friends. [Backstrom et al., 2011] studied two types of attention: communication interaction and viewing
attention (e.g. looking at profiles or photos). Users’ communication attention is focused on small num-
bers of friends, but viewing attention is dispersed across all friends. This finding supports our approach
of looking at many types of user interactions across all of a user’s contact network, as a user’s interest is
driven by where he/she focuses attention.

The mechanisms of diffusion invite interesting mathematical and empirical investigations. The
Galton-Watson epidemics model suits the basic setup of social message diffusion, and can explain real-
world information cascade such as email chain-letters when adjusted with selection bias [Golub and
Jackson, 2010]. For social diffusions in a one-to-many setting, however, the epidemics model has been
less accurate. Ver Steeg et al [Ver Steeg et al., 2011] found that online message cascades (on Digg social
reader) are often smaller than prescribed by the epidemics model, seemingly due to the diminishing re-
turns of repeated exposure. Romero et al [Romero et al., 2011], in an independent study, confirmed the
effect of diminishing returns with Twitter hashtag cascades, and further found that cascade dynamics dif-
fer across broad topic categories such as politics, culture, or sports. Our observations on user preference
on items liked by a number of Facebook friends suggest a large cumulative number of friend preferences
is more predictive, although further investigation is needed to pinpoint the effect of diminishing returns
on repeated exposures.

The nature of social diffusion seem to be not only democratic [Asur et al., 2011, Bakshy et al., 2011],
but also broadening for users [Bakshy et al., 2012]. While influential users are important for cascade
generation [Bakshy et al., 2011], large active groups of users are needed to contribute for the cascade
to sustain [Asur et al., 2011]. Moreover, word-of-mouth diffusion can only be harnessed reliably by
targeting large numbers of potential influencers, confirmed by observations on Twitter [Bakshy et al.,
2011] and online ads [Watts and Dodds, 2007]. In a study facilitated by A/B testing on Facebook links,
[Bakshy et al., 2012] found that while people are more likely to share the information they were exposed
to by their strong ties rather than their weak ties, the bulk of information we consume and share comes
from people with different perspectives (weak ties). SAF aims to leverage many of these insights for
social recommendation by viewing affinity groups as diffusion channels. Yet, information diffusion and
recommendation are distinct problems — while we observed best recommendation performance using
activities ranging across all Facebook users, the vast majority of information diffusion happens within
one step from the source node [Goel et al., 2012].

The second group of related work tries to correlate from user interactions to preferences and tie
strength. Saez-Trumper et al [Saez-Trumper et al., 2011] found that incoming and outgoing activities
are highly correlated on broadcast platforms such as Facebook and Twitter, and such correlation does
not hold in one-to-one mode of communication such as email. Multiple studies have found that on-

§3.6 Conclusion 37

line interactions tend to correlate more with interests than with user profile. Singla et al [Singla and
Richardson, 2008] found that users who frequently interact (via MSN chat) tend to share (web search)
interests. Anderson et al [Anderson et al., 2012] concluded that the level of user activities correlate with
the positive ratings that they give each other, i.e., it is less about what they say (content of posts) but
more about who they interacted with. Such findings echo those by Brandtzag [Brandtzg and Nov, 2011]
that real-world interactions (e.g., appearing in the same photo evidenced by tagging) further strengthens
friendship on Facebook, while virtual interactions reveal interests. Furthermore, ratings of real-world
friendship strength and trust [Gilbert and Karahalios, 2009] seems to be better predicted from the inti-
macy, intensity, and duration of interactions, than from social distance and network structure. Our work
is not only inspired by these observations, we also quantify the strength of correlations of user interest
with a large variety of user affinities – namely, activities, and group preferences in different categories.

The third group of related work is concerned with using social network and behaviour information
for recommendation. Matrix factorisation, as discussed in Section 2.3.2, is one of the prevailing ap-
proaches for recommender systems [Koren et al., 2009, Ma et al., 2008b]. Recent advances include
extending matrix factorisation to user social relation [Cui et al., 2011, Yang et al., 2011a, Ma et al.,
2011a, Li and Yeung, 2009a, Ma et al., 2008a, Noel et al., 2012], as discussed in Section 2.4.4. These
systems have shown very promising performance across a range of problems, but they all collapse social
affinity (fine-grained interactions and group affinity) into one or a very low-dimensional representation.
The point of departure of this work is to explore the predictive power of fine-grained social information.

3.6 Conclusion

In this Chapter, we formulated a novel Social-CF algorithm, Social Affinity Filtering (SAF), using linear
models that directly leverages fine-grained signals from a social network. Further, we demonstrated
the effectiveness of linear models for Social-Cf and substantial predictive power of fine-grained social
features in predicting users’ preferences.

However, as a fundamental limitation, Social Affinity Filtering learns a global model for the users, as
discussed in Section 3.3.4, and might be lacking personalisation. Further, the proposed method requires
feature engineering, which requires human supervision. In the following Chapter, building upon the key
insights i.e. superiority of the linear models and social features for the recommendation, we formulate a
personalised linear model that is capable of leveraging social signals for cold-start recommendation.

38 Linear Models for Social Recommendation

Chapter 4

Linear Models for Cold-Start
Recommendation

In Chapter 3, we demonstrated the efficacy of linear models for Social-CF, and showed that social infor-
mation, such as page likes, are highly predictive of users’ preferences. In this Chapter, we investigate
cold-start recommendation. The user cold-start problem concerns the task of recommending items to
users who have not previously purchased or otherwise expressed preferences towards any item under
consideration. Similarly, item cold-start problem of recommending new items to the users In this Chap-
ter, we focus on formulating a personalised linear model for cold-start users1 in OC-CF setting that
leverages users’ metadata, such as page likes.

4.1 Problem setting

In this Chapter, we are concerned with recommending a ranked list of items to the users. We have
historical preference data R 2 {0, 1}

m⇥n that consists of users’ purchase history, where Rui = 1 means
that user u purchased item i as in one-class collaborative filtering setting. We wish to train a model
using warm-start users’ data and test on cold-start users. Formally, let U(tr) denote warm-start users
with at least one purchase, and the U(te) cold-start users without any preference data. Our interest is in
producing ˆR(te)

2 R|U(te)
|⇥n, the recommendation matrix for the cold-start users.

Personalised recommendation for cold-start users is impossible from R alone. But given a metadata
matrix X 2 Rm⇥d, with X(tr)

, X(te) being the metadata for the warm- and cold-start users respectively,
we can leverage such data to learn users’ preferences. For concreteness, we will think of Xup being
whether or not user u “likes” a page p, though X could equally reflect e.g. users’ group memberships,
friend circles, et cetera. The key idea that enables cold-start prediction is that users metadata such as
page likes are predictive of users’ preferences, as observed in Chapter 3.

4.2 Background

In Section 2.4.3, we briefly discussed algorithms for cold-start recommendation. Here, we will discuss
cold-start algorithms in detail. There have been two broad strands of such work extending neighbour-
hood and matrix factorisation respectively.

1The proposed methods directly translate to item cold-start problem.

39

40 Linear Models for Cold-Start Recommendation

4.2.1 Neighbourhood based cold-start CF

As discussed in Section 2.4.3, neighbourhood based cold-start CF [Zhang, Zi-Ke et al., 2010, Sahebi and
Cohen, 2011] uses metadata to compute user-user or item-item similarity to make recommendations.
For user cold-start, the similarity between cold-start and warm-start users, Suv, where u 2 U(te) and
v 2 U(tr), is computed from the metadata X using predefined similarity metrics such as cosine similarity.
The recommendation matrix is defined as

ˆR(te) = S · R(tr)
. (4.1)

4.2.2 MF based cold-start CF

There are two popular approaches to MF based CF for cold-start recommendation, as discussed in 2.4.3,

Co-Factorisation

Co-Factorisation based cold-start CF (CMF) [Krohn-Grimberghe et al., 2012] finds a latent subspace for
users that is jointly predictive of both user preferences and side-information. It minimises

min

A,B,Z
||R � AB||2F + µ||X � AZ||2F + lA||A||

2

F + lB||B||2F + lZ||Z||2F (4.2)

where A 2 Rm⇥k
, V 2 Rk⇥n, and Z 2 Rk⇥d for some latent dimensionality k ⌧ min(m, n). We then

predict
ˆR(te) = A(te)B. (4.3)

The intuition is that A is jointly predictive of rating and metadata, and generalise for cold-start recom-
mendation.

Feature mapping

Feature mapping based cold-start recommendation is a two-step model. Here, the first step is to model
the warm-start users by R(tr)

⇡ A(tr)B, with latent features A(tr)
, B as before. The second step is to

learn a mapping between the metadata X(tr) and latent features A(tr) using e.g. linear regression,

A(tr)
⇡ X(tr)T (4.4)

for T 2 Rd⇥k. We then estimate the cold-start latent features A(te) = X(te)T, and use Equation 2.19
for prediction, and we refer this model as BPR-LinMap [Gantner et al., 2010]. Similarly, [van den Oord
et al., 2013] used convolutional neural network to map item features to latent factors for item cold-start.

Other models

There has been a significant amount of research in leveraging side-information for MF models, such as:

• Regression Based Latent Factor Model (RLFM) [Agarwal and Chen, 2009] leverages users’
and items’ metadata by combining regression and latent factor model for predicting users’ prefer-
ences:

ˆRui = bu + bi + f(Xu, Xi) · w + AT
u Bi

§4.3 Linear models for cold-start recommendation 41

where f is a feature generating function; bu and bi are user and item bias respectively. For the
cold start user u, preference is predicted as:

ˆRui = bu + bi + f(Xu, Xi) · w

• Matchbox incorporates users’ and items’ metadata in MF model, as discussed in Equation 4.5,
by predicting recommendation matrix as

ˆR(q) = (AXU)T(BXI) (4.5)

In principle the above methods can produce cold-start recommendations. However, the key limita-
tion is that they are formulated for rating prediction problem and don’t scale in one-class collaborative
filtering (OC-CF) setting. In particular, we cannot use Alternate Least Squares(ALS), due to lack of
analytical solution, which is a key for large-scale OC-CF. Naively treating unobserved as 0 results into a
large number of matrix entries making gradient based optimisation impractical for real world scenarios.

4.2.3 Limitations of existing approaches

The neighbourhood based models are simple and intuitive. However, they don’t account for correlation
amongst the features. These models risk underfitting, as the features can be highly correlated, such as
pages liked by the user.

As discussed in Section 2.3.2, MF based methods are non-convex, and hence susceptible to local
minima. The feature mapping algorithm is a two step algorithm, and hence highly susceptible to error
propagation. Further, while it accounts for feature correlations, it risks overfitting for high dimensional
X while learning the mapping function. This was indeed observed in the high-dimensional experiments
in [Gantner et al., 2010]. Similarly, CMF, has limited scalability by virtue of requiring tuning of at least
four hyperparameters (µ, lA, lB, lZ). In Table 4.1, we summarise the properties of various cold-start
models.

Method Feature Correlation Convex Scalability
NEIGHBORHOOD ⇥ - X
CMF X ⇥ ⇥

BPR-LINMAP X ⇥ ⇥

GEN-NEIGHBORHOOD ⇥ - X
LoCo X X X

Table 4.1: Comparison of various cold-start methods whether they handle correlated features, yield
optimal solution and are scalable.

4.3 Linear models for cold-start recommendation

In this section, we formulate a cold-start recommendation model that exploits users’ social side infor-
mation X. Perhaps the most natural form of cold-start model that leverages X is the linear content-based
model as shown below:

ˆR(te) = X(te)W, (4.6)

42 Linear Models for Cold-Start Recommendation

where W 2 Rd⇥n. The most apparent approach to learn W is by performing multivariate linear regres-
sion:

min

W
||R(tr)

� X(tr)W||

2

F + l||W||

2

F (4.7)

for which
W = ((X(tr))TX(tr) + lI)�1(X(tr))TR(tr)

. (4.8)

The fundamental limitation of Equation 4.7 is that X is generally very high dimensional, often much
more than the number of training instances i.e d � m. Hence, the model can easily overfit. Further, we
cannot use the analytical solution as shown in Equation 4.8 due to the computational cost and memory
requirement in inverting ((X(tr))TX(tr) + lI).

In the following section, we first compare Equations 4.1 and 4.6, and formulate a generalised neigh-
bourhood method for cold-start recommendation. Second, we address the limitation, as discussed above,
and formulate a large-scale linear model for cold start recommendation.

4.3.1 Generalised neighbourhood (Gen-Neighbourhood) based cold-start model

For the task of user cold-start recommendation, while Equation 4.1 uses user-user similarity, Equa-
tion 4.6 is essentially learning feature-item similarity. Based on this observation, we first formulate a
generalised neighbourhood model for OC-CF setting:

ˆR = R � RT ? R, (4.9)

where � and ? refer to generalised matrix operations such as inner-product, and cosine product (nor-
malised inner-product). By permitting various ordering of operations and definitions for the � and ?

operators other than standard matrix multiplication, we define a generalised matrix algebra framework
for recommendation that can recover many existing frameworks when the operators are defined appro-
priately. For instance, if we compute ˆR as :

ˆR = (R � RT) ? R,

where � is cosine product and ? is an inner-product, then it corresponds to cosine similarity based
User-KNN model. The cosine product , say C = A �cosine B, can be defined as a normalised matrix
multiplication

Cij = Ai: �cosine B
:j

=
1

k

Ai:k
��B

:j
�� Â

k
Aik · Bkj

Similarly, if we compute ˆR as :

ˆR = R � (RT ? R).

where ? is an inner-product and � is cosine product, then it corresponds to cosine similarity based
Item-KNN model.

Now we define a generalised users feature based model as:

ˆR = X(te)
� X(tr) ? R(tr)

. (4.10)

§4.4 Relation to existing models 43

As per the definition of linear model in Equation 4.6, we define the cold-start recommendation as

ˆR = X(te)
� W

ˆR = X(te)
� (X(tr) ? R(tr)).

(4.11)

The proposed model can be applied to any users’ side-information. Like the neighbourhood model, as
discussed in Section 2.3.1, the key limitation of the proposed model is that it uses fixed operator for
� and ? instead of learning directly by optimising some loss function. To address this limitation, we
formulate a learning based model in the following section.

4.3.2 Low linear cold-start (LoCo) model

We now formulate a cold-start model overcoming the limitations of the linear model as discussed earlier.
Our basic strategy is to learn a linear model where the weight matrix W is of low rank:

min

W : rank(W)k
||R(tr)

� X(tr)W||

2

F + l||W||

2

F. (4.12)

for some k latent dimension. We will optimise over a subset of low-rank matrices as follows. Let
X(tr)

k = UkSkVT
k be the rank-k SVD approximation of X(tr). Then, we will let W = VkZ and solve

min

Z
||R(tr)

� X(tr)VkZ||2F + l||VkZ||2F. (4.13)

Since Vk is orthonormal, the regulariser is equivalently ||Z||2F, and so we have the closed-form solution

Z = (VT
k (X

(tr))TX(tr)Vk + lI)�1VT
k (X

(tr))TR(tr)
. (4.14)

We call this model LOCO, for Low-rank Cold-start recommendation. An approximation of the pro-
jection X(tr)Vk can be computed efficiently using randomised SVD which we discuss in Appendix A.
Further, the matrix inverse in Equation 4.14 is a k ⇥ k matrix and thus it can be computed efficiently for
modest k. In fact, for the exact Vk,

XVk = UkSk,

(XVk)
TXVk = ST

k UT
k UkSk = S2

k ,

and Equation 4.13 corresponds to whitened linear regression. In such case

(VT
k (X

(tr))TX(tr)Vk + lI)

is a diagonal matrix and its inverse can be computed trivially. However, in randomised SVD, Vk is an
approximate, but we expect this to hold approximately.

4.4 Relation to existing models

In this section, we discuss how all of the discussed cold-start models can be viewed as a special case
of 4.6. In Table 4.2, we summarise recommendation for various cold-start approaches discussed in this
Chapter.

44 Linear Models for Cold-Start Recommendation

Method Recommendation Matrix (ˆR(te))
NEIGHBOURHOOD (X(te)

� X(tr)) · R(tr)

CMF X(te)ZT(BBT + ZZT)�1B
BPR-LINMAP X(te)((X(tr))TX(tr) + lI)�1(X(tr))TA(tr)B
GEN-NEIGHBOURHOOD X(te)

� (X(tr) ? R(tr))
LOCO X(te)Vk(VT

k (X
(tr))TX(tr)Vk + lI)�1VT

k (X
(tr))TR(tr)

Table 4.2: Summary of cold-start recommendation for various approaches.

4.4.1 Neighbourhood model

Consider the neighbourhood model of in Equation 4.11, When �, ? are standard inner product opera-
tions,

ˆR(te) = X(te)((X(tr))TR(tr)), (4.15)

corresponding exactly to the linear model of Equation 4.6 with a weight matrix W = XTR. Recalling
that R(te)

⌘ 0, the predicted rating for user u and item i is thus

ˆRui = Xu:

XTR
:i

=
1

2

· Xu:

XT(2 · R
:i � 1 + 1)

=
1

2

·

Â
Ru0 i=1

Xu:

XT
u0

:

� Â
Ru0 i=0

Xu:

XT
u0

:

!
+

1

2

Xu:

XT1.

The second term above is independent of i, and thus plays the role of a per-user bias that does not affect
ranking. The first term above corresponds to a nearest unnormalised centroid classifier: we measure
whether the social metadata Xu:

for the given user is more similar to that of the unnormalised metadata
centroid of the users that like item i, or those that dislike item i. The normalised centroid classifier is
also known as the Rocchio classifier in information retrieval [Manning et al., 2008], and is attained if
we normalise the columns of R above to sum to 1, i.e. use an asymmetric cosine similarity for ?.

4.4.2 CMF model

The parameters of the CMF model (Equation 4.2) can be learned by iteratively optimising with respect
to each individual parameter, keeping all others fixed. Each such individual optimisation is a regression
problem, and thus admits a closed form solution. The unregularised optimal solution for A is

A = (RBT + XZT)(BBT + ZZT)�1 (4.16)

for the optimal choices of Z, B, which will depend in some non-trivial way on R, X. Thus, the cold-start
prediction is ˆR(te) = A(te)V = X(te)ZT(BBT + ZZT)�1B. This is a special case of Equation 4.11 for
low-rank weight matrix W = ZT(BBT + ZZT)�1B.

4.4.3 BPR-LinMap model

For the BPR-LinMap model (Equations 4.4), the optimal linear regression weights T to map the metadata
to latent features are

T = ((X(tr))TX(tr) + lI)�1(X(tr))TA(tr)
, (4.17)

§4.5 Experiment and evaluation 45

meaning that

ˆR(te) = X(te)((X(tr))TX(tr) + lI)�1(X(tr))TA(tr)B,

which is an instance of Equation 4.6 with low-rank weight matrix W = ((X(tr))TX(tr) +lI)�1(X(tr))T
ˆR(tr),

recalling that ˆR(tr) = A(tr)B. Indeed, the model is identical to that of multivariate linear regression
(Equation 4.8), with one crucial difference: one uses ˆR(tr) in place of R(tr) i.e. we replace the regression
target matrix by a low-rank approximation.

4.5 Experiment and evaluation

In this section, we discuss the dataset used for experiments, experimentation methodology, and report
detailed experimental results.

4.5.1 Data description

In this Chapter, we evaluate the performance of the models on two real-world datasets.

• Kobo Dataset comes from Kobo Inc., a major online ebook retailer with more than 20 million
readers. It contains an anonymised dataset of ebook purchases and Facebook friends and page
likes for a random subset of 32,027 Kobo users; these users purchased more than 88,810 books,
had over 9 million friends and liked about 6 million pages. We subsample pages by including only
those pages liked by at least 5 people and not more than 5,000 people, which reduces the number
of unique pages to about 606,780. The dataset also includes item purchase timestamps, basic user
demographics, namely age group, gender, location and friendship network.

We split the dataset into 10 temporally divided train and test folds. To prepare the training dataset,
we include all the user-item data prior to a specific date, starting from June 2012 and incremented
by a month in each fold. The test set includes the first purchase of all new users in the following
month when the user had at least 10 page likes.

• Flickr Dataset comes from [Tang and Liu, 2009]. It consists of 80,513 users, 195 groups joined
by the users, and a social network with 5,899,882 friendship relationships as summarised in Table
4.3. The goal is to recommend relevant groups to the users leveraging their social network data
i.e friendship network.

We create 10 train-test folds by including random 10% of the users in the test set and remaining
90% users in the training set.

Kobo Data
Users 32,027
Items 88,810
Pages 6,218,698

Flickr Data
Users 80,513
Items (groups) 195
Friendship relationships 5,899,882

Table 4.3: Dataset description for Kobo and Flickr datasets.

4.5.2 Model comparison

In this section, we discuss various baselines we used to compare with the proposed methods:

46 Linear Models for Cold-Start Recommendation

• MOST POPULAR baseline recommends the most popular items in the dataset in order of popular-
ity.

• CBF-KNN-LOW is a neighbourhood recommender , as discussed in Section 4.2.1, where user-
user similarities are computed from the low dimensional projection of user-attributes.

• BPR-KNN-LOW of [Gantner et al., 2010], as discussed in Section 4.2.2, but using k-nearest-
neighbor 2 rather than linear regression to map user attributes to the latent factors.

• CMF of [Krohn-Grimberghe et al., 2012] as defined in Equation 4.2.

For generalised cold-start neighbourhood model, we explore the following operators for � and ? as
per Equation 4.11, for any row vector r and column vector c

• IP : Standard matrix multiply inner product given by Sr,c = hr, ci.

• BINIP : For t 2 R, a binary thresholded version of the inner product given by

Sr,c =

8
<

:
1 i f hr, ci > t

0 otherwise.

• LOGIP : A logarithm of the inner product Sr,c = loghr, ci.

• COS : Cosine similarity which is obtained by an inner product of two L
2

normalized vectors
equivalent to Sr,c =

hr,ci
krkkck .

We can obtain different social cold-start recommenders by choosing the similarity metrics (IP,
LOGIP, BINIP, COS) used for both � and ? in Equation 4.11. We express the choices in the order
of ?-� and show evaluations for the following eight possibilities (the remaining possibilities did not
approach the best result reported among these eight):

• � = IP, ? 2 {IP, LOGIP, BINIP, COS}

• � = COS, ? 2 {IP, LOGIP, BINIP, COS}

In our experiments, we used the threshold t = 2 for BINIP.
We used cosine similarity for the methods relying on similarity except for generalised neighbor-

hood method where we used the above operators. For the latent factor methods, we tuned the latent
dimension from {5, 10, 50, 100, 500, 1000}. For the methods relying on `

2

regularisation, we tuned all
regularisation strengths from {1000, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001}.

In all of the experiments, we report Precision@k, Recall@k and mean average precision (mAP@100),
as discussed in Chapter 2, using 10-fold cross validation and provide standard error bars corresponding
to 95% confidence intervals.

4.5.3 Results and analysis

In this section, we report and discuss the experimental results for various cold-start algorithms

2We experimented on various mapping strategies, as reported in [Gantner et al., 2010], on full and low rank projection of user attributes.
We found kNN with the low-dimensional projection of user attributes to work best.

§4.5 Experiment and evaluation 47

Evaluation of generalised neighbourhood cold-start model

In Table 4.4 and 4.5, we evaluate the performance of generalised neighbourhood based cold-start recom-
mender for various choice of ? and � on Kobo dataset. Here, we see that Cos-Cos model yields superior
results. From here onwards, we will choose Cos-Cos models for rest of the experiments.

IP-IP LOGIP-IP BINIP-IP COS-IP
k Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.027±0.013 0.027±0.013 0.030±0.012 0.030±0.012 0.028±0.012 0.028±0.012 0.030±0.012 0.030±0.012
@3 0.018±0.007 0.053±0.020 0.020±0.008 0.061±0.023 0.022±0.009 0.066±0.026 0.022±0.008 0.066±0.024
@5 0.017±0.006 0.086±0.032 0.019±0.008 0.097±0.038 0.020±0.008 0.102±0.040 0.020±0.008 0.102±0.038
@10 0.014±0.005 0.136±0.047 0.015±0.005 0.148±0.050 0.015±0.005 0.153±0.051 0.015±0.005 0.154±0.052
@20 0.009±0.003 0.181±0.060 0.009±0.003 0.185±0.061 0.009±0.003 0.186±0.060 0.010±0.003 0.191±0.060
mAP 0.057±0.019 0.062±0.021 0.063±0.022 0.065±0.021

Table 4.4: Performance of Page Likes Recommender for ? 2 {IP, LOGIP, BINIP, COS}, � = IP on
Kobo dataset.

IP-Cos LogIP-Cos BinIP-Cos Cos-Cos
k Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.031±0.014 0.031±0.014 0.031±0.013 0.031±0.013 0.030±0.014 0.030±0.014 0.038±0.015 0.038±0.015
@3 0.021±0.008 0.064±0.023 0.022±0.008 0.065±0.023 0.021±0.008 0.063±0.024 0.025±0.010 0.076±0.029
@5 0.020±0.008 0.100±0.039 0.020±0.008 0.101±0.038 0.020±0.007 0.100±0.037 0.023±0.009 0.117±0.044
@10 0.015±0.005 0.151±0.052 0.015±0.005 0.153±0.052 0.016±0.005 0.159±0.055 0.017±0.006 0.173±0.059
@20 0.010±0.003 0.193±0.061 0.010±0.003 0.193±0.061 0.010±0.003 0.202±0.063 0.010±0.003 0.205±0.063
mAP 0.065±0.022 0.065±0.022 0.065±0.021 0.075±0.025

Table 4.5: Performance of Page Likes Recommender for ? 2 {IP, LOGIP, BINIP, COS}, � = Cos on
Kobo dataset.

Evaluation of predictive power of various side-information

In Table 4.6, we compare the predictiveness of various side-information, namely (a) Demographics, (b)
Friend network, and (c) Page likes, using Cos-Cos model on Kobo dataset. Here, we observe page likes
based recommender significantly outperforms other models. This illustrates the predictive power of page
likes, as we observed in Chapter 3. For the rest of the experiments, we will use page-like features to
compare various cold-start recommendation algorithms.

Demographics Friend Network Page Likes
k Precision Recall Precision Recall Precision Recall

@1 0.014±0.004 0.014±0.004 0.014±0.006 0.014±0.006 0.038±0.015 0.038±0.015
@3 0.010±0.003 0.031±0.008 0.011±0.004 0.032±0.012 0.025±0.010 0.076±0.029
@5 0.010±0.004 0.050±0.018 0.009±0.003 0.044±0.016 0.023±0.009 0.117±0.044
@10 0.008±0.003 0.083±0.029 0.006±0.002 0.062±0.022 0.017±0.006 0.173±0.059
@20 0.006±0.003 0.125±0.051 0.004±0.001 0.078±0.025 0.010±0.003 0.205±0.063
mAP 0.035±0.010 0.029±0.010 0.075±0.025

Table 4.6: Performance comparison of Cos-Cos model for various users’ side-information on Kobo
dataset.

Evaluation of various cold-start recommenders

In Table 4.7 and Table 4.8, we compare the performance of LoCo with various cold-start recommenders
on the Kobo and Flickr datasets. LoCo yields a ⇠25% improvement on the Kobo dataset and 10%
improvement on the Flickr dataset over the most competitive baseline, viz CMF on Kobo, COS-COS

48 Linear Models for Cold-Start Recommendation

MOST POPULAR BPR-KNN-LOW CMF CBF-KNN-LOW COS-COS LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.006±0.003 0.006±0.003 0.008±0.005 0.008±0.005 0.049±0.028 0.049±0.028 0.038±0.022 0.038±0.022 0.038±0.015 0.038±0.015 0.064±0.033 0.064±0.033

@3 0.008±0.003 0.023±0.010 0.011±0.007 0.033±0.021 0.033±0.019 0.101±0.056 0.023±0.010 0.069±0.031 0.025±0.010 0.076±0.029 0.041±0.016 0.123±0.047

@5 0.008±0.004 0.039±0.019 0.014±0.009 0.071±0.045 0.027±0.013 0.140±0.067 0.022±0.008 0.108±0.040 0.023±0.009 0.117±0.044 0.036±0.012 0.178±0.059

@10 0.007±0.003 0.074±0.034 0.012±0.006 0.123±0.062 0.019±0.008 0.187±0.080 0.019±0.006 0.191±0.059 0.017±0.006 0.173±0.059 0.025±0.007 0.252±0.070

@20 0.006±0.003 0.120±0.067 0.010±0.004 0.203±0.089 0.011±0.004 0.221±0.079 0.013±0.004 0.270±0.072 0.010±0.003 0.205±0.063 0.015±0.004 0.300±0.077

mAP 0.026±0.011 0.042±0.017 0.093±0.044 0.079±0.027 0.075±0.025 0.117±0.042

Table 4.7: Comparison of cold-start recommenders on Kobo dataset.

MOST POPULAR BPR-KNN-LOW CMF CBF-KNN-LOW COS-COS LoCo

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

@1 0.170±0.003 0.135±0.003 0.126±0.002 0.095±0.002 0.159±0.003 0.123±0.003 0.206±0.002 0.158±0.002 0.223±0.005 0.176±0.005 0.260±0.003 0.202±0.003

@3 0.097±0.001 0.221±0.003 0.074±0.002 0.163±0.003 0.099±0.001 0.217±0.003 0.132±0.002 0.292±0.004 0.136±0.002 0.304±0.005 0.154±0.002 0.341±0.004

@5 0.073±0.001 0.282±0.005 0.056±0.001 0.205±0.006 0.076±0.001 0.272±0.004 0.101±0.001 0.367±0.004 0.103±0.001 0.376±0.005 0.113±0.001 0.409±0.006

@10 0.050±0.001 0.377±0.005 0.038±0.001 0.279±0.005 0.051±0.001 0.366±0.005 0.066±0.001 0.471±0.005 0.067±0.001 0.478±0.004 0.070±0.001 0.497±0.005

@20 0.033±0.000 0.502±0.004 0.026±0.000 0.382±0.004 0.033±0.000 0.467±0.005 0.040±0.000 0.572±0.004 0.041±0.000 0.582±0.004 0.042±0.000 0.582±0.004

mAP 0.224±0.003 0.168±0.002 0.215±0.002 0.277±0.002 0.294±0.004 0.321 ± 0.003

Table 4.8: Comparison of cold-start recommenders on Flickr dataset.

on Flickr dataset. Among the runners-up (existing methods), CMF was superior on the Kobo dataset,
but COS-COS performed better on the Flickr dataset. Furthermore, BPR-KNN-LOW performed poorly
on both datasets, indicating the lack of robustness of two step algorithm. The high variances for all
methods on the Kobo dataset indicate that with temporal splits, there is a potentially strong concept drift
in the data that affects all methods since they do not leverage temporal information.

Further, tuning the large number of hyperparameters for CMF and BPR-KNN-Low took ⇠2 hours
and 20 hours respectively on the Kobo dataset. On the other hand, tuning for LoCo and other meth-
ods took the order of minutes. Hence, LoCo is computationally efficient and suitable for large-scale
recommendation.

Evaluation of cold-start vs near cold-start recommender

In Table 4.9, we compare the performance of cold-start recommender with near cold start recommender
on Kobo dataset. We prepare the test set by including users who have purchased only one item in the
training set and used Item-Knn, as discussed in Section 2.4.2, for recommendation. Table 4.9 shows that
item purchase is a strong signal. However, cold-start recommender based on page likes yields superior
results for higher k for precision@k and recall@k metrics.

ITEM-KNN LoCo

k Precision Recall Precision Recall
@1 0.115±0.028 0.115±0.028 0.064±0.033 0.064±0.033

@3 0.051±0.012 0.153±0.035 0.041±0.016 0.123±0.047

@5 0.034±0.007 0.171±0.034 0.036±0.012 0.178±0.059
@10 0.019±0.003 0.186±0.033 0.025±0.007 0.252±0.070
@20 0.009±0.002 0.190±0.034 0.015±0.004 0.300±0.077

Table 4.9: Comparision of cold-start recommender (LoCo) with near cold-start Item-Knn recommender
on Kobo dataset.

Evaluation of runtime of various cold-start recommenders

In table 4.10, we compare the hyperparameter validation time needed for all methods on Ebook. LoCo is
seen to be orders of magnitude faster to tune than the learning-based methods CMF and BPR-KNN-Low.

§4.5 Experiment and evaluation 49

Method BPR-KNN-LOW CMF CBF-KNN-LOW COS-COS LOCO

Validation time 20 hour 30 mins 2 hour 2 mins 5 mins 10 secs 2 secs 5 mins 3 secs

Table 4.10: Comparison of validation times on Kobo dataset.

While the CBF and Cos-Cos methods are faster to tune than LoCo, the latter is more accurate. Hence,
LoCo attains a suitable balance between accuracy and runtime.

Analysis

We conclude our experiments by evaluating the performance of the proposed methods as a function of
different key quantities:

• How does performance vary with the number of page likes for a target user?

<
 2

0

2
0

-5
0

5
0

-1
0

0

1
0

0
-5

0
0

>
 5

0
0

page likes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

p
re

c#
1

0

<
 2

0

2
0

-5
0

5
0

-1
0

0

1
0

0
-5

0
0

>
 5

0
0

page likes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

re
ca

ll#
1

0

Figure 4.1: Variation of the performance of the page like based COS-COS model with the numbers of
page likes.

<
 2

0

2
0

-5
0

5
0

-1
0

0

1
0

0
-5

0
0

>
 5

0
0

page likes

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

p
re

c#
1

0

<
 2

0

2
0

-5
0

5
0

-1
0

0

1
0

0
-5

0
0

>
 5

0
0

page likes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

re
ca

ll#
1

0

Figure 4.2: Variation of the performance of the page like based LoCo model with the numbers of page
likes on Kobo dataset.

The number of page likes varies from user to user. Thus we divide users into six categories
based on the number of pages they have liked and evaluate the performance (mAP@100) on each
user category. In Figure 4.1 and 4.2, we evaluate the performance of COS-COS and LoCoon
Kobo dataset respectively. It shows that performance increases as the number of user page likes
increases, but with diminishing return. The high variance for users with few page likes indicate a
lack of sufficient information, whereas the high variance for users with many page likes indicate
a lack of selectiveness with page likes. Most importantly, we see that LoCo makes good item
recommendations to the users with a moderate number of page likes.

50 Linear Models for Cold-Start Recommendation

• How does performance of LoCo varies with the dimension of the projection?

0 200 400 600 800 1000
#dimensions

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
a
p
#
1
0
0

Figure 4.3: LoCo retrieval performance versus dimension of projection on the Kobo dataset.

In Figure 4.3, we evaluate the performance (mAP@100) with the projection dimension on the
Kobo dataset. We observe that performance increases sharply with the number of dimensions,
but with diminishing returns beyond 100 dimensions. Hence, LoCo is applicable to large scale
problems with high dimensional user features.

4.6 Conclusion

In this Chapter, we formulated novel linear cold-start algorithms. We showed how several popular
social cold-start models can be seen as special cases of a linear content-based model, with different
constraints on the learned weights. Based on this insight, we proposed two large-scale cold-start models:
(a) Generalised neighbourhood based model,and (b) LoCo. Further, we demonstrated the effectiveness
of linear models for the cold-start recommendation and substantial predictive power Facebook page likes
in predicting users’ preferences.

Despite its superior performance, it is unclear how the proposed framework can be extended to
operate seamlessly in non-cold-start settings as well. In practical settings, we expect a mix of both cold
and warm start users, and it’s undesirable to build separate models for each set of users. In next Chapter,
we address this by formulating a CF algorithm for OC-CF using the same linear framework.

Chapter 5

Linear Models for One-Class
Collaborative Filtering

In the last two Chapters, we demonstrated the efficacy of linear models, and predictiveness of social
signals for specific CF scenarios. In this Chapter, we investigate linear models for the one-class col-
laborative filtering (OC-CF) setting. OC-CF is concerned with predicting users’ preferences from the
data that consists of positive only preferences. OC-CF scenario is one of the most important settings for
recommendation mostly due to its prevalence in many practical recommendation settings such as item
purchase in e-commerce, as discussed atatcin Chapter 2. In this Chapter, we formulate recommendation
as a classification problem and propose a user-focused linear model for OC-CF. Further, leveraging the
classification view, we formulate a dimensionality reduction based model to scale linear models on large
scale datasets

5.1 Problem setting

In this Chapter, we are concerned with recommending a ranked list of items to the users in OC-CF
setting. Formally,w e have historical preference data R 2 {0, 1}

m⇥n that consists of users’ purchase
history, where Rui = 1 means that the user u purchased item i, and Rui = 0 refers to not purchased;
however, it doesn’t imply that user would not purchase the item in the future. Hence, Rui = 0 indicates
missing as opposed to negative feedback. Based on existing purchase information, a recommendation
algorithm will produce a matrix ˆR 2 Rm⇥n of estimated preference scores. As the entries in ˆR are
real-valued, for each user u, we can sort the entries of ˆRu:

to obtain a predicted ranking over items. As
discussed in Chapter 2, none of the existing methods meet all CF desiderata, namely (1) applicable to
wide range of recommendation scenarios, (2) learning-based, (3) amenable to convex optimisation, and
(4) scalable. In this Chapter, we propose a simple linear model that addresses all CF desiderata.

5.2 LRec: Linear model for OC-CF

First, we focus on learning a linear model for each user in OC-CF setting defined above. Given the
user-item interaction matrix R, for each u 2 U, we define a vector y(u)

2 {±1}

n that is the same as
Ru:

except with zeros in Ru:

replaced by �1:

y(u) = 2Ru:

� 1.

51

52 Linear Models for One-Class Collaborative Filtering

Now, we formulate LRec as

min

w Â
u2U

Â
i2I

`(y(u)
i , RT

:i w
(u)) + W(w), (5.1)

where ` is some convex loss function, and W = {w(u)
}u2U . Each w(u)

2 Rm, and so we can equiva-
lently think of W = {w} for some W 2 Rm⇥m, with w(u) = W

:u.
In the sequel, we will employ W(W) = l

2

||W||

2

F. Although any loss function ` can be applied, we
focus on two loss functions

1. Logistic loss, `(y, v) = log(1 + e�yv), mainly due to the existence of efficient solvers for linear
logistic regression, such as such as LIBLINEAR1 [Fan et al., 2008], and its suitability for estimat-
ing class-probabilities, which we will see in Section 5.2.2 is especially appropriate for learning in
OC-CF setting,

2. Squared loss, `(y, v) = (y � v)2, mainly due to closed-form solution, which we will exploit for
scaling the model to large scale dataset.

We now discuss the intuition for the LRec model, before contrasting it to existing methods for OC-CF.

5.2.1 A linear classification perspective

Equation 5.1 can be interpreted as a linear classification model for each user u. The feature matrix
for each such model is the entire purchase matrix transposed, while the label vector for each model
comprises the purchase information for that user. That is, for each model, we have a separate training
example corresponding to each item. The feature vector for the item comprises the purchase history for
all users (including the one in consideration2), while the label for the item is simply whether or not the
user in consideration purchased it. Each Wuu0 is a weight indicating the relevance of the purchases of
user u in predicting the purchases of the user u0.

Given a learned W, LRec produces a recommendation matrix

ˆR(W) = WTR, (5.2)

or, for a specific (user, item) pair (u, i),

ˆRui = Â
u0

2U
Wuu0

· Ru0i.

We see that the score assigned to the (u, i) pair is simply the sum of the similarities of all other users
who purchased item i. (The similarity to neighbourhood methods will be discussed more in §5.4.2.)

We can also interpret the scores by considering the matrix a 2 Rn⇥m, whose columns correspond
to the dual weights of the objective in Equation 5.1. The weights aiu can be interpreted as the relevance
of item i to user u. From the relationship between the primal and dual weights [Zhang, 2002], we can
write

ˆRui = Â
i02I

ai0u · (RT
:i R:i0). (5.3)

The dot product RT
:i R:i0 is simply the number of users who co-purchased items i and i0. Therefore, the

predicted score for (u, i) is the sum of the number of co-purchases with every other item, weighted by the

1
http://www.csie.ntu.edu.tw/

˜

cjlin/liblinear/

2This is only done for the training purchases of each user. Therefore, there is no leakage of test purchases into the model.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

§5.3 Extensions of LRec 53

relevance of these items to user u. Further, the dual formulation can be used for efficient optimisation
when m � n.

5.2.2 A positive and unlabelled perspective

In the linear classification model for each user, LRec treats the known preferences as positive examples,
and unknown preferences as negative examples. It appears that this falls into the trap of suppressing
preferences for items that the user is unaware of. However, one can justify this strategy as follows.

In a binary classification context, we can view the learning problem for each user as one of learning
from positive and unlabelled data [Denis, 1998]. Elkan and Noto [2008] proved a surprising fact about
learning from such data, namely, that for the purposes of ranking, it suffices to simply treat the unlabelled
examples as negative, and estimate class-probabilities. As we are only interested in ranking performance
for top-N items for each user, this justifies learning user focused model by treating unknown preferences
as negative, provided we choose ` in Equation 5.1 to be some loss suitable for estimation of class-
probabilities [Buja et al., 2005], such as the logistic (`(y, v) = log(1 + e�yv)) or squared (`(y, v) =

(y � v)2) loss.
We now detail some salient properties of the LRec model.

5.2.3 Properties of LRec

Several observations are worth emphasising at this point. First, training of the LRec model is highly
parallelisable across the users, as the weights w(u) do not depend on each other. Parallelisation may
thus be conducted without distributed communication. Further, the design matrix RT is identical across
all users u. Therefore, this matrix can be shared across all such parallel executions of a per-user model,
which is useful on a multi-core architecture.

Second, the feature matrix for each model is highly sparse: we expect that for most items, only
a small fraction of users will have purchased them. This means that the actual optimisation of the
individual linear classification models can be done efficiently, employing e.g. sparse matrix-vector com-
putations.

Third, the use of `
2

regularisation is crucial beyond its standard value in preventing overfitting.
Recall that for each user u’s model, that user’s purchase history is included as a feature. Without regu-
larisation, then, the solution to Equation 5.1 is trivial: we simply let Wuu0 = 0 for all u 6= u0, and let
Wuu ! +•. However, with `

2

regularisation, such a solution is penalised. What is favoured instead is
a spreading of weight across other similar users.

Fourth, the objective in Equation 5.1 is strictly convex. Therefore, there are no issues of local optima
that methods such as matrix factorisation face.

In Table 5.1, we summarise properties of various collaborative filtering methods.

5.3 Extensions of LRec

In this Section, we discuss several possible extensions to the LRec model.

5.3.1 Incorporating side-information

It is easy to incorporate any side-information in the form of feature vectors for users and items. Sup-
pose each item has a feature vector v 2 Rd, and let XI

2 Rn⇥d denote the matrix of features for all

54 Linear Models for One-Class Collaborative Filtering

Table 5.1: Comparison of recommendation methods for OC-CF. The ⇤ for PureSVD is added because
the objective is not convex, but has a closed-form solution via the singular value decomposition. The ⇤

for BPR is added because the extension in Gantner et al. [2012] is needed to ensure user focus.

Method Reference Learning? Convex? User-focussed? Embarrasingly
Parallelisable

U-KNN [Herlocker et al., 1999] ⇥ NA X X
I-KNN [Sarwar et al., 2001] ⇥ NA ⇥ X
PURESVD [Cremonesi et al., 2010] X X⇤ X ⇥

WRMF [Pan et al., 2008] X ⇥ X ⇥

BPR [Rendle et al., 2009] X ⇥ X⇤

⇥

SLIM [Ning and Karypis, 2011] X X ⇥ X
LREC Our method X X X X

items. Then, we can use exactly the same core LRec model as Equation 5.1, but change the feature
representation to

h
RT XI

i
2 Rn⇥(m+d)

.

The learned weights will now be W 2 Rm⇥(m+d), so that for each user we additionally learn affinities
to the features of an item.

5.3.2 Weighting for class-imbalance

In addition to the feature matrix for each model being sparse, we also expect the label vector for each
model to be highly imbalanced, as each user will typically have purchased only a small fraction of
all available items. In a binary classification context, we can think of this as an imbalanced learning
problem. In such cases, the estimates of parameters produced by e.g. logistic regression are known to
be biased [King and Zeng, 2001]. To obtain better estimates of the parameters, a simple option is to
balance the loss by the inverse base rate of each class [Lin et al., 2002, Menon et al., 2013]. Thus, the
objective becomes

min

W
Â

u2U
Â
i2I

1

p(u)
i

· `(y(u)
i , XT

i: w
(u)) + W(W),

where

p(u)
i = Jy(u)

i = 1K · |Iu|+ Jy(u)
i = �1K · (n � |Iu|).

Weighted logistic regression objectives can be solved with a variant of LIBLINEAR that accepts weights
for training instances3.

5.3.3 Subsampling negatives

In scenarios with a large number of items, it may be infeasible to train a linear classification model with n
training examples. As noted above, each model typically involves a highly imbalanced training set. For
computational convenience, we can thus apply another technique standard in learning from imbalanced

3
http://www.csie.ntu.edu.tw/

˜

cjlin/libsvmtools/weights/liblinear-weights-1.94.zip

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/weights/liblinear-weights-1.94.zip

§5.4 Relation to existing models 55

data, namely, subsampling of the dominant class [Kubat and Matwin, 1997]. Here, for each model
corresponding to a user u, we keep all items which the user purchased as training examples. Amongst
all items the user did not purchase, we only retain a random subsample. The precise downsampling ratio
can be chosen empirically; once the ratio is fixed, we can again apply the weighting scheme above to
ensure reliable estimates of parameters.

5.4 Relation to existing models

We now contrast LRec to existing methods for recommendation with implicit feedback.

5.4.1 Relation to SLIM

The model most closely related to LRec is SLIM (Equation 2.11). To see the connection, observe that
we may rewrite SLIM as (see also [Ning and Karypis, 2011, Equation 4])

min

W2C
Â
i2I

Â
u2U

`(y(i)
u , R(i)

u:

w(i)) + W(W),

where C = {W 2 Rn⇥n
: diag(W) = 0, W � 0}, `(y, v) = (y � v)2 is the square loss, and the feature

matrix R and label vector y(i) = R
:i.

LRec has three main advantages over SLIM.
User-focussed modelling. We can see SLIM as learning a separate model for each item, where in

each such model we treat each user as a training instance, represented by their purchase history. This is
in contrast to LRec, which learns a separate model for each user. While this difference appears trivial,
it is very important in the context of recommendation. In most recommendation tasks, one is interested
in achieving good recommendation performance for an average user, i.e. the natural correspondence to
a “query” in information retrieval is the user. It is thus of interest to ensure that for each such user, we
optimise the recommendation performance. By contrast, we can see SLIM as solving a subtly different
problem, namely, ensuring that for each item, there is a good ranking over the users that would be
interested in it. While this will of course be correlated with the solution from the former, in practice we
shall see that there is a performance gap between the two approaches.

Inclusion of target user. Another subtle difference between LRec and SLIM is the definition of the
constraint set C. In SLIM, the use of diag(W) = 0 is crucial, because otherwise as noted we can just set
W = I and attain zero loss. However, such a solution will not be optimal when using logistic loss, as in
LRec. Therefore, this means that the constraint diag(W) = 0 is unnecessary. Dropping the constraint is
beneficial from the perspective of parallelisation, as we can share the feature matrix RT across multiple
models.

Optimisation. As noted earlier, with the choice of logistic loss or squared loss, the LRec objective
(Equation 5.1) can be optimised via efficient standard solvers. By contrast, optimisation of SLIM re-
quires respecting the nonnegativity constraint on the weights, as well as performing `

1

regularisation.
This can be handled by e.g. proximal gradient methods, but the resulting optimisation is not as efficient
as the unconstrained version [Levy and Jack, 2013].

5.4.2 Relation to neighbourhood methods

As item-based neighbourhood approaches can be seen as subsumed by SLIM, the above advantages
of LRec over SLIM apply to such methods as well. Another perspective can be gained from the dual

56 Linear Models for One-Class Collaborative Filtering

formulation of the LRec prediction in Equation 5.3. The latter equation appears similar to the item-based
neighbourhood prediction, which from Equation 2.10 can be written

ˆRui = Â
i02I

Rui0 · Si0i.

Observe that such a prediction only considers the influence of those items a user has purchased; it ignores
those items that the user has not purchased. However, LRec employs a learned user-item affinity aui.
This means that LRec can take into consideration even those items that are not purchased by user u.

Compared to user-based neighbourhood methods, we can see LRec as a principled means of learning
a similarity matrix. In user-based neighbourhood methods, akin to Equation 2.9, we have

ˆR = SR.

This is exactly the same form as the prediction from LRec (Equation 5.2), with the choice S = WT.
Crucially, however, the matrix S in a neighbourhood method is not learned by optimising some objective
function.

In fact, user-based neighbourhood methods have historically not been favoured because of the dif-
ficulty in selecting a good S [Linden et al., 2003]. This is because the rows of R are typically sparser
than its columns, i.e. most users tend to purchase a few items, while some items may have purchases by
many users. Consequently, standard choices for S, such as cosine similarity, will be highly noisy (and
often uninformatively just 0), as one expects any two users to have only a few common purchases. By
contrast, since LRec attempts to learn S from a principled objective, it has the ability to overcome the
sparsity issue.

5.4.3 Relation to matrix factorisation

Compared to matrix factorisation approaches, LRec does not involve projection of users and items into
a shared latent space. However, we can interpret factorisation approaches as follows. Consider WRMF
as discussed in 2.12. Then, the optimal solution for the item latent factors is clearly

B = (AAT + lI)�1AR.

This means that the factorisation equally predicts

ˆR = SR,

where S = AT(AAT + lI)�1A is a rank K matrix. (A similar analysis was performed in Hu et al.
[2008], while Cremonesi et al. [2010] explicitly finds S by performing an SVD of R.) This is again ex-
actly the same form as the prediction from LRec (Equation 5.2). Thus, we can view matrix factorisation
as solving a surrogate to

min

W2C
Â

u2U
Â
i2I

`(y(u)
i , RT

:i w
(u)) + W(W),

where C = {W 2 Rm⇥m
: rank(W) = K}.

There are thus two main advantages to LRec over such approaches.
Convexity of objective. Matrix factorisation imposes the constraint that the weight matrix is rank K.

This can be viewed as performing reduced rank regression [Reinsel and Velu, 1998], an interpretation
that has been noted previously [Yu and Tresp, 2005]. While a low-rank assumption is plausible, it makes

§5.5 LRec for rating prediction? 57

the resulting optimisation non-convex. By contrast, LRec allows S to be full-rank, and uses an `
2

penalty
to prevent overfitting, resulting in a strongly convex objective.

Parallelisation w/o distributed communication. Matrix factorisation models can be trained via alter-
nating least squares (ALS) [Hu et al., 2008]. For a fixed set of item latent features B, we can learn the
user latent features A by performing least squares using B as a design matrix and, for each u 2 U, a
target vector y(u) = RT

u:

. As in LRec, this operation can be parallelised across users. However, when
it comes to learning the item latent features, all distributed nodes must send their estimates of A to a
central source. As ALS typically requires several such alternation iterations, this communication may
become expensive. By contrast, in LRec, such distributed communication is not required: both learning
and recommendation for all users can be done completely independently.

5.5 LRec for rating prediction?

The most natural natural to ask is whether LRec can be applied for rating prediction problem i.e explicit
feedback setting where R 2 Rm⇥n. Unfortunately, LRec cannot be applied in such setting for two
reasons. First, we cannot assume the unobserved entries (regression targets) as zeros for the rating
prediction task. Second, as a consequence, if we learn only from the observed data, there are too few of
them for a regression model to generalise. However, LRec can be applied on rating data for a ranked list
recommendation as such task is only concerned with relative scores.

5.6 LinearFlow: Fast low rank linear model

Despite being highly parallelisable, LRec requires solving a large number of regression subproblems
on huge design matrix RT making it challenging on large scale datasets (SLIM also suffers from the
same limitation). Further, the memory requirement is quadratic on the number of m or n. Hence, the
applicability of Linear methods, both LRec and SLIM, on real world large scale dataset is challenging.
In this Section, we formulate an algorithm leveraging closed-form solution of squared loss for scaling
up linear methods to large OC-CF problems.

For squared loss, we can write Equation 5.1 as

argmin

���RT
� RTW

���
2

F
+ l

k

W
k

2

F , (5.4)

where the optimal solution for W is given as

W = (RRT + lI)�1RRT
, (5.5)

which involves the computing inverse of large matrix and therefore does not scale to large problems.
To address this limitation, we seek an approximation R ⇡ RW that attempts to capture most of the

row space of the matrix R through a matrix W that is low-rank and has small Frobenius norm.

argmin

rank(W)k

���RT
� RTW

���
2

F
+ l

k

W
k

2

F , (5.6)

where k ⌧ m. The motivation for such a double regularization is to better control the generalization
error of the model, which we will prove via experiments. Moreover, it turns out that there is a natural and
efficient way to compute such an approximate decomposition of the matrix R by randomization [Halko
et al., 2011], which allows scaling to large problems.

58 Linear Models for One-Class Collaborative Filtering

For l = 0, the optimal solution for W in Equation 5.6 is given by the Eckart-Young theorem (see,
e.g., [Halko et al., 2011])

W = QkQT
k , (5.7)

where Qk is an orthogonal matrix computed by a truncated SVD

RT
⇡ PkSkQT

k , (5.8)

However, under both a low-rank constraint and l > 0 in (5.6), finding the optimal W involves
solving a hard nonconvex problem with no analytical solution in general. Nonetheless, an analytical so-
lution is possible for a certain parametrization of W as we explain next. We first compute an approximate
orthogonal basis Qk of the row space of RT, i.e.,

RT
⇡ RTQkQT

k (5.9)

using randomised SVD. In Appendix A, we outline the randomised SVD algorithm (we refer to [Halko
et al., 2011] for more details.) Then we re-parametrize the matrix W as

W = QkZ (5.10)

for some matrix Z. Note that through this parametrization the rank of W is automatically controlled, no
optimality is lost when l = 0, and the optimization problem (5.6) reads

argmin

Z

���RT
� RTQkZ

���
2

F
+ l

k

QkZ
k

2

F . (5.11)

Since Qk is orthogonal, we have
k

QkZ
kF =

k

Z
kF, and (5.11) becomes

argmin

Z

���RT
� RTQkZ

���
2

F
+ l

k

Z
k

2

F . (5.12)

The latter can be solved analytically to give

Z = (QT
k RRTQk + lI)�1QT

k RRT
.

Note that this inversion involves a k ⇥ k matrix, and hence it can be computed efficiencly for decent
value of k. Same as we discussed in Section 4.3.2, (QT

k RRTQk + lI) is a diagonal matrix for exact
SVD and its inverse can be computed trivially. However, in randomised SVD, Qk is an approximate, but
we expcet this to hold approximately.

In other words, the choice of W = QkZ is motivated by the following observation. When l = 0, the
solution to our problem is W = QkQT

k . This is also the solution to the new formulation of our problem
for Z = QT

k . When l is close to zero, we believe that sufficiently good solutions lie close to the span of
Qk. Therefore, we choose W = QkZ. We demonstrate that this choice performs well empirically in the
experimental section.

We refer to (5.11) as U-LINEAR-FLOW as it corresponds to user-user LRec model. Similarly, we
can define an item-item model, I-LINEAR-FLOW

argmin

Z
k

R � RPkZ
k

2

F + l
k

Z
k

2

F . (5.13)

§5.7 Experiments and evaluation of LREC model 59

In U-LINEAR-FLOW model, the user-user similarity can be recovered as W = QkZ. Similarly, in
I-LINEAR-FLOW model, the item-item similarity can be recovered as W = PkZ.

The recommendation matrix for LINEAR-FLOW , say U-LINEAR-FLOW, is given as

ˆR = RRTQk((QT
k RRTQk + lI)�1)TQT

k R.

5.7 Experiments and evaluation of LREC model

In this Section, we discuss datasets, experimental methodology and report detailed experimental results
for the LRec model. We will discuss experiments for LINEAR-FLOW in Section 5.8. We first thoroughly
evaluate the LRec model.

5.7.1 Data description

We evaluate LRecmode on four datasets. Table 5.2 summarises statistics of these datasets.

Table 5.2: Summary of datasets used in evaluation.

Dataset m n |Rui > 0|

ML1M 6,038 3,533 575,281
KOBO 38,868 170,394 89,815
LASTFM 992 107,398 821,011
MSD 1,019,318 384,546 48,373,586

ML1M. The MovieLens 1M dataset4 is a standard benchmark for collaborative filtering tasks. Fol-
lowing the “Who Rated What” KDD Cup 2007 challenge [Bennett et al., 2007a], we created a binarised
version of the dataset suitable for evaluating implicit feedback methods. From the original rating matrix
R 2 {0, 1, . . . , 5}

m⇥n, we created a preference matrix ˜R with ˜Rui = JRui � 4K. We then used this as
input to all methods.

KOBO. The Kobo dataset comes from Kobo Inc.5, a major online ebook retailer with more than 20
million readers. This is an anonymized dataset of ebook purchases of a subset of about 40,000 Kobo
users; these users purchased around 90,000 books.

LASTFM. The LastFM dataset6 [Celma, 2008] contains the play counts of ⇠1000 users on ⇠170,000
artists. As per ML1M, we binarised the raw play counts.

MSD. The Million Song dataset (MSD)7 [Bertin-Mahieux et al., 2011] comprises the play counts for
⇠1M users on ⇠300,000 songs. The goal is to predict the listening preferences for ⇠100K test users.
As per ML1M, we binarised the raw play counts.

5.7.2 Evaluation protocol

For the ML1M and LASTFM datasets, we estimate performance based on 10 random train-test splits,
similar to [Pan et al., 2008, Johnson, 2014]. If R is the full user-item purchase matrix, then for each
split, we select a random 20% subset of all (user, item) pairs (regardless of whether they were purchased

4
http://grouplens.org/datasets/movielens/

5
http://www.kobo.com

6
http://ocelma.net/MusicRecommendationDataset/index.html

7
http://labrosa.ee.columbia.edu/millionsong/

http://grouplens.org/datasets/movielens/
http://www.kobo.com
http://ocelma.net/MusicRecommendationDataset/index.html
http://labrosa.ee.columbia.edu/millionsong/

60 Linear Models for One-Class Collaborative Filtering

or not), and place them in the test set. We report the mean test split performance, along with standard
errors corresponding to 95% confidence intervals.

For KOBO, we followed the above except using temporally divided train and test splits. To prepare
the training dataset, we include all purchase data prior to a specific date, starting from June 2012 and
incremented by a month in each split. The test set includes all books purchased by users in the week
following the train data. We use the last purchased item in the training set for each user as a validation
set, used for fine-tuning any hyperparameters.

For MSD, we use the provided training set to learn all models. We evaluate perform on 10 random
subsets of the provided test set. In each such random subset, we pick 500 random test users to evaluate
performance on.

To evaluate the performance of the various recommenders, we report Precision@k for k 2 {3, 5, 10, 20}

(averaged across all test fold users), and mean average precision (mAP@100).

5.7.3 Model comparison

In this Section, we discuss various baselines we used to compare with LRec model:

• Recommending the most popular items to each user (Popularity), after removing those items that
the user has already purchased in the training set. This can be competitive if many users consume
items from the short tail. This is a minimal baseline that any competing method must outperform
to be considered useful.

• User- and item-based nearest neighbour (U-KNN and I-KNN), as discussed in Section 2.4.2, using
both cosine similarity and Jaccard coefficient to define the similarity matrix S. For each dataset,
we picked the best performing of the two metrics.

• PURESVD of [Cremonesi et al., 2010], as discussed in Section 2.4.2.

• Weighted matrix factorisation (WRMF), as discussed in Section 2.4.2.

• Logistic matrix factorisation (LOGISTICMF) [Johnson, 2014], This is as per Equation 2.1 with
the weights Jui = JRui > 0K, and ` being the logistic loss.

• Bayesian Personalised Ranking (BPR), Equation 2.17 in Section 2.4.2.

• SLIM, as discussed in Section 2.4.2. For computational convenience, we used the SGDReg vari-
ant [Levy and Jack, 2013], which removes the nonnegativity constraint. It is identical to SLIM
except that the nonnegativity constraint is removed.

• Two variants of LRec, one which uses square rather than logistic loss (LREC+SQ), and one which
additionally employs `

1

regularisation and nonnegativity of weights (LREC+SQ+`
1

+NN). The
weight constraints in the latter approach are as employed by SLIM.

We use LRec and LRec+Sq to denote the proposed method with logistic and squared loss respec-
tively. LRec+Sq can be seen as a simplification of U-SLIM, where there is no `

1

regularisation, no
nonnegativity constraint, and no constraint on the diagonal of W.

For WRMF and BPR, we used the implementation as provided in the MyMediaLite package8. For
SLIM, we used the SGDReg implementation as provided in the MRec package9. For LOGISTICMF and
LREC, we used our own implementation in NumPy.

8
http://www.mymedialite.net/

9
http://www.recsyswiki.com/wiki/Mrec

http://www.mymedialite.net/
http://www.recsyswiki.com/wiki/Mrec

§5.7 Experiments and evaluation of LREC model 61

For the neighbourhood methods, we tuned the neighbourhood size from {10, 20, 40, 80, 120, 160, n/m}.
For methods relying on a latent dimension K, we tuned this from {10, 20, 40, 80, 120, 160}. For meth-
ods relying on `

2

regularisation, we tuned this from l 2 {1000, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001}. For
WRMF, the weight a (Equation 2.12) was tuned from {1, 5, 10, 20, 40, 80}.

5.7.4 Results and analysis

Table 5.3: Results on ML1M dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

POPULARITY 0.0685 ± 0.001 0.1645 ± 0.002 0.1505 ± 0.001 0.1316 ± 0.001 0.1106 ± 0.001

U-KNN 0.1564 ± 0.001 0.3125 ± 0.001 0.2793 ± 0.001 0.2309 ± 0.001 0.1816 ± 0.001
I-KNN 0.1473 ± 0.001 0.2998 ± 0.001 0.2720 ± 0.001 0.2287 ± 0.001 0.1826 ± 0.001

PURESVD 0.1611 ± 0.001 0.3245 ± 0.002 0.2910 ± 0.003 0.2434 ± 0.002 0.1932 ± 0.002
WRMF 0.1682 ± 0.002 0.3297 ± 0.002 0.2969 ± 0.002 0.2474 ± 0.002 0.1975 ± 0.002
LOGISTICMF 0.0683 ± 0.002 0.1644 ± 0.001 0.1498 ± 0.001 0.1306 ± 0.002 0.1095 ± 0.001
BPR 0.1611 ± 0.001 0.3060 ± 0.001 0.2822 ± 0.001 0.2402 ± 0.001 0.1928 ± 0.002

I-SLIM 0.1751 ± 0.001 0.3421 ± 0.002 0.3101 ± 0.001 0.2590 ± 0.001 0.201 ± 0.001

LREC+SQ+`
1

+NN 0.1648 ± 0.003 0.3325 ± 0.003 0.3019 ± 0.004 0.2558 ± 0.003 0.1981 ± 0.002
LREC 0.1806 ± 0.001 0.3514 ± 0.004 0.3154 ± 0.001 0.2622 ± 0.002 0.2078 ± 0.001
LREC+SQ 0.1762 ± 0.001 0.3498 ± 0.002 0.3131 ± 0.001 0.2588 ± 0.001 0.2031 ± 0.001

Table 5.4: Results on LASTFM dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

POPULARITY 0.0859 ± 0.001 0.4061 ± 0.004 0.3632 ± 0.005 0.3184 ± 0.003 0.2721 ± 0.002

U-KNN 0.1483 ± 0.002 0.5454 ± 0.003 0.5078 ± 0.001 0.4551 ± 0.001 0.3968 ± 0.002
I-KNN 0.1684 ± 0.002 0.5775 ± 0.001 0.5503 ± 0.002 0.5001 ± 0.001 0.4333 ± 0.001

PURESVD 0.1703 ± 0.001 0.6019 ± 0.008 0.5658 ± 0.005 0.5127 ± 0.003 0.4441 ± 0.002
WRMF 0.1825 ± 0.001 0.6254 ± 0.012 0.5898 ± 0.009 0.5286 ± 0.006 0.4587 ± 0.002
LOGISTICMF 0.0847 ± 0.001 0.4052 ± 0.002 0.3675 ± 0.001 0.3207 ± 0.001 0.2711 ± 0.001
BPR 0.1497 ± 0.002 0.5001 ± 0.035 0.4746 ± 0.018 0.4332 ± 0.021 0.3890 ± 0.012

I-SLIM 0.0309 ± 0.003 0.0539 ± 0.005 0.0491 ± 0.003 0.0404 ± 0.003 0.0316 ± 0.004

LREC+SQ+`
1

+NN 0.2030 ± 0.001 0.6492 ± 0.001 0.6147 ± 0.003 0.5580 ± 0.002 0.4801 ± 0.001
LREC 0.1833 ± 0.001 0.6010 ± 0.010 0.5700 ± 0.008 0.5173 ± 0.004 0.4527 ± 0.002
LREC+SQ 0.2038 ± 0.001 0.6498 ± 0.010 0.6185 ± 0.005 0.5589 ± 0.004 0.4875 ± 0.001

In this Section, we discuss the experimental results. Tables 5.3 – 5.6 summarise the results of the
various methods. We make the following observations:

• LRec consistently outperforms all other methods by a statistically significant margin. In terms of
the mAP@100 score, the % improvement over the next best method is 7.3% on ML1M, 2.5% on
KOBO, 0.4% on LASTFM, and 14% on MSD.

• LREC+SQ generally is competitive with LRec, and on the KOBO and LASTFM datasets is in fact
superior. As the difference between the two approaches is simply the choice of loss function,
and since using square loss in a classification context is equivalent to performing Fisher’s Linear
Discriminant [Bishop, 2006, Section 4.1.5], this is unsurprising.

62 Linear Models for One-Class Collaborative Filtering

Table 5.5: Results on KOBO dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

POPULARITY 0.0364 ± 0.015 0.0121 ± 0.005 0.0145 ± 0.007 0.0134 ± 0.007 0.0101 ± 0.005

U-KNN 0.1164 ± 0.029 0.0563 ± 0.015 0.0411 ± 0.012 0.0269 ± 0.006 0.0170 ± 0.003
I-KNN 0.1115 ± 0.010 0.0548 ± 0.006 0.0417 ± 0.004 0.0265 ± 0.003 0.0160 ± 0.002

PURESVD 0.0902 ± 0.009 0.0410 ± 0.013 0.0301 ± 0.009 0.0178 ± 0.010 0.0101 ± 0.009
WRMF 0.0972 ± 0.022 0.0472 ± 0.022 0.0337 ± 0.014 0.0200 ± 0.007 0.0123 ± 0.004
LOGISTICMF 0.0415 ± 0.021 0.0172 ± 0.011 0.0132 ± 0.007 0.0115 ± 0.004 0.0101 ± 0.003
BPR 0.0616 ± 0.025 0.0280 ± 0.014 0.0247 ± 0.009 0.0198 ± 0.006 0.0144 ± 0.003

I-SLIM 0.1092 ± 0.018 0.058 ± 0.011 0.0393 ± 0.007 0.0253 ± 0.004 0.0164 ± 0.002

LREC+SQ+`
1

+NN 0.1250 ± 0.013 0.0610 ± 0.007 0.0442 ± 0.004 0.0289 ± 0.001 0.0184 ± 0.001
LREC 0.1247 ± 0.020 0.0605 ± 0.010 0.0437 ± 0.006 0.0284 ± 0.003 0.0179 ± 0.002
LREC+SQ 0.1282 ± 0.017 0.0619 ± 0.008 0.0462 ± 0.005 0.0294 ± 0.002 0.0189 ± 0.002

Table 5.6: Results on MSD. Reported numbers are on the provided test set.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

POPULARITY 0.0181 ± 0.006 0.0466 ± 0.008 0.044 ± 0.005 0.035 ± 0.003 0.024 ± 0.002

U-KNN 0.1075 ± 0.008 0.2145 ± 0.021 0.1883 ± 0.020 0.1366 ± 0.013 0.0912 ± 0.007
I-KNN 0.1548 ± 0.011 0.3117 ± 0.072 0.2740 ± 0.063 0.2125 ± 0.038 0.1483 ± 0.016

PURESVD Did not finish in 24 hours
WRMF Did not finish in 24 hours
LOGISTICMF Did not finish in 24 hours
BPR Did not finish in 24 hours

I-SLIM Did not finish in 24 hours

LREC+SQ+`
1

+NN 0.1481 ± 0.020 0.3030 ± 0.018 0.2760 ± 0.025 0.2060 ± 0.035 0.1450 ± 0.018
LREC 0.1766 ± 0.013 0.3301 ± 0.012 0.3020 ± 0.031 0.2310 ± 0.038 0.1640 ± 0.016
LREC+SQ 0.1531 ± 0.012 0.3033 ± 0.012 0.2760 ± .028 0.2160 ± 0.021 0.1520 ± 0.015

• LREC+SQ consistently outperforms LREC+SQ+`
1

+NN. This suggests that the constraints on W
and `

1

regularisation imposed by SLIM are harmful for retrieval.

• Generally, item-based neighbourhood methods perform better than the user-based counterparts.
This matches our earlier observation that the high sparsity across rows of R results in a less
informative estimate of S. We similarly observe that LREC+SQ+`

1

+NN is generally better than
I-SLIM.

• Neighbourhood methods are competitive with their matrix factorisation counterparts. This high-
lights the different challenge in the implicit compared to explicit feedback settings, as well as in
top-N recommendation versus rating prediction.

• Amongst the matrix factorisation methods, WRMF performs the best in all datasets, and is com-
petitive with the neighbourhood methods. BPR is seen to generally under perform. This is possi-
bly due to the fact that it optimises for AUC, i.e. average performance across all thresholds, rather
than for performance at the head of the ranked list.

• On all but the ML1M dataset, the number of (test) users is significantly fewer than the number of
items. Therefore, methods that are item-focussed tend to strongly under perform. For example,
on the LASTFM dataset, the otherwise competitive I-SLIM method performs much worse than

§5.7 Experiments and evaluation of LREC model 63

all other methods.

• The scale of MSD is challenging for learning, in particular for all of the matrix factorisation
methods. For example, WRMF, which is trained used alternating least squares, did not finish
running in a day. Exploiting subsampling of negative instances, as done for LRec, is crucial
to attain scalability. Compared to other scalable methods, such as the neighbourhood methods,
LRec’s performance is significantly superior.

5.7.5 Long-tail recommendations

We study how LRec fares in recommending items in the long-tail. Following [Cremonesi et al., 2010,
Ning and Karypis, 2011], we take the short-tail to comprise the smallest set of items which account for
20% of all purchases. The long-tail comprises all other items. On the ML1M dataset for example, we
find that the long tail comprises 99% of items. Figure 5.1 compares the performance of various methods
when the short-tail items are removed from the training set, in terms of Prec@20. As expected, the
performance of all methods drops significantly compared to the results in Table 5.3. However, LRec
remains the best performing of all methods in this scenario.

LRec WRMF I−SLIM U−SLIM I−KNN
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Method

P
re

c@
2
0

0.
20

78

0.
16

56

0.
19

75

0.
16

01

0.
19

61

0.
15

93 0.
16

65

0.
15

44

0.
18

26

0.
13

15

Normal
Long−Tail

Figure 5.1: Long-tail results for LRec on ML1M dataset.

5.7.6 Near cold-start recommendation

Tables 5.3 – 5.6 summarise retrieval performance across all users. However, different users will have
rated different numbers of items. It is of interest to see how LRec compares to baselines as a function
of the numbers of ratings provided by a user. To do this, we segment users on the ML1M dataset based
on the 1%, 25%, 50%, 75% and 99% quantiles of the number of training ratings. For each segment, we
then plot the % improvement in terms of Prec@20 of LRec over WRMF.

Figure 5.3 shows the improvements of LRec across these segments. We see that, reassuringly, LRec
is significantly superior to WRMF over all user segments. Of interest is that we see dramatic improve-
ments in Prec@20 for LRec over WRMF for users that provide a small number (1 – 6) of ratings. This
shows that LRec is especially useful in near cold-start recommendation scenarios.

At the same time, we expect that recommendation performance will be positively correlated with
the number of training ratings for a user. Figure 5.3 confirms that as a function of the number of ratings,
the Prec@20 steadily increases for LRec. (While recommendation performance is not very high for low
numbers of training ratings, Figure 5.2 shows it is nonetheless significantly superior to the performance
WRMF in this scenario.)

64 Linear Models for One-Class Collaborative Filtering

0

10

20

30

[1, 6] [7, 21] [22, 46] [47, 98] [99, 400] [401, 1141]
of user ratings

%
 im

p
ro

ve
m

e
n
t
in

 P
re

c@
2
0

23
.1

%

2.
5% 4.

1% 4.
9% 5.

7%
8.

5%

Figure 5.2: Improvement in Prec@20 of LRec over WRMF for users with varying number of training
ratings, ML1M dataset.

1 10 100 1000
0

0.2

0.4

0.6

0.8

of user ratings

A
ve

ra
g
e
 P

re
ci

si
o
n
@

2
0

Figure 5.3: Retrieval performance of LRec as a function of number of training ratings, ML1M dataset.

5.7.7 Case-Study

We now attempt to translate the above performance gains into qualitative changes in recommendation.
On the ML1M dataset, we compare the top 10 recommendations generated by LRec and WRMF for a
user with relatively few training ratings (16). Table 5.7 shows a selection of this user’s preferred movies
on the training set, as well as the resulting recommendations. We see that the user’s training preferences
are towards sci-fi movies, which are picked up by both WRMF and LRec. However, we see that more
specifically, the user enjoys “B-grade” Hollywood sci-fi movies, often themed on “alien invasion”, with
movies such as “It Came from Beneath the Sea” and “It Conquered the World”. This is not picked up by
WRMF, which recommends more “cerebral” sci-fi movies such as “2001” and “Gattaca”. By contrast,
LRec captures the user’s taste at a finer granularity, resulting in successfully capturing all three preferred
movies in the user’s test set.

The above illustrates a general phenomenon: in addition to producing accurate recommendations for
users with few training ratings, LRec produces accurate recommendations for non-mainstream users,
i.e. users whose preferences are for items that are not popular. As an analogue to Figure 5.2, Figure
5.4 shows the % improvement in Prec@20 scores for LRec over WRMF, where users are segmented
according to the average popularity of their training set movies. Here, the popularity of a movie is
simply the number of training purchases of the movie. We see that for non-mainstream users, LRec
achieves significant improvement over WRMF. This illustrates that LRec captures user preferences at a
finer granularity.

As further illustration of LRec’s ability to generalise from limited information, we can compare the
recommendation performance of LRec and WRMF as a function of item popularity. For each item, we
compute the number of times the item is correctly recommended in the top 20 list for LRec and WRMF
(i.e. it is recommended and it is preferred in the user’s test set), normalised by the number of times the
item is preferred by a user. We call this the % of correct recommendations for an item. Figure 5.5 plots
this as a function of the popularity of each movie. While both methods are comparable for items in the

§5.8 Experiments and evaluation of LINEAR-FLOW model 65

0

5

10

15

20

25

[76, 246] [247, 480] [481, 590] [591, 722] [723, 1144] [1145, 1571]

Avg popularity of training set movies

%
 im

p
ro

ve
m

e
n
t
in

 P
re

c@
2
0

20
.0

%

8.
4%

4.
8%

4.
0%

0.
8% 1.

7%

Figure 5.4: Improvement in Prec@20 of LRec over WRMF for users with varying average popularity of
their training set movies, ML1M dataset.

1 10 100 1000
0

0.2

0.4

0.6

0.8

of item ratings

%
 o

f
co

rr
e
ct

 r
e
cs

LRec
WRMF

Figure 5.5: Comparison of % of correct recommendations for movies by LRec and WRMF, ML1M
dataset. See text for details.

Table 5.7: Preferred movies on the training set for a candidate user, and resulting top 10 recommenda-
tions on ML1M dataset. Bolded entries are actually enjoyed by user on test set, which is shown as the
last column. The training set movies are a subset of the 16 that the user enjoys.

Preferred training movies WRMF recommendations LRec recommendations Preferred test movies
• Day the Earth Stood Still, The • Planet of the Apes • Them! • Blob, The
• Forbidden Planet • Thing, The • Godzilla (Gojira) • Them!
• Kronos • Night of the Living Dead • Blob, The • It Came from Outer Space
• Tarantula • Star Trek: The Wrath of Khan • 20,000 Leagues Under the Sea
• Thing From Another World, The • Fly, The • Soylent Green
• War of the Worlds, The • Alien • Village of the Damned
• It Came from Beneath the Sea • Dark City • Metropolis
• Invasion of the Body Snatchers • Star Trek IV: The Voyage Home • Quatermass and the Pit
• Earth Vs. the Flying Saucers • 2001: A Space Odyssey • It Came from Outer Space
• It Conquered the World • Gattaca • Plan 9 from Outer Space

short tail, we notice that WRMF never recommends movies with less than 150 ratings, i.e. “extreme
long tail” movies. By contrast, LRec is able to correctly recommend movies with as few as 21 ratings.

5.8 Experiments and evaluation of LINEAR-FLOW model

In this Section, we discuss datasets, experimental methodology and report detailed experimental results
for LINEAR-FLOW model. We report experiments on a larger collections of datasets, where LRec is not
applicable.

5.8.1 Data description

First, we evaluate LINEAR-FLOW with top-performing models from the Section 5.7.1. Further, we
evaluate LINEAR-FLOW on three additional large-scale datasets as summarised in Table 5.8. In these

66 Linear Models for One-Class Collaborative Filtering

three datasets, we remove users with fewer that 3 corresponding items and vice-versa.

Table 5.8: Summary of datasets used in evaluation.

Dataset m n |Rui > 0|

ML10M 69,613 9,405 5,004,150
PROPRIETARY-1 26,928 14,399 120,268
PROPRIETARY-2 264,054 57,214 1,398,332

ML1M The MovieLens 10M dataset10 is a standard benchmark for collaborative filtering tasks. Fol-
lowing the “Who Rated What” KDD Cup 2007 challenge [Bennett et al., 2007a], we created a binarized
version of the dataset suitable for evaluating implicit feedback methods. From the original rating matrix
˜R 2 {0, 1, . . . , 5}

m⇥n, we created a binarized preference matrix R with Rui = J ˜Rui � 4K.
PROPRIETARY-1 & PROPRIETARY-2 are two real but anonymized purchase datasets. PROPRIETARY-

1 dataset consists of ⇠27,000 users, ⇠14,000 items and ⇠120,000 item purchases. Similarly, PROPRIETARY-
2 dataset consists of ⇠264,000 users, ⇠57,000 items and ⇠1 million item purchases.

5.8.2 Evaluation protocol

First, we evaluate the performance of LINEAR-FLOW on the datasets defined in 5.7.1 following the same
evaluation strategy as discussed in 5.7.2. For the ML10M , PROPRIETARY-1 , and PROPRIETARY-2
dataset, we split the datasets into random 90%-10%

11 train-test set and hold out 10% of the training set
for hyperparamater tuning. We report the mean test split performance, along with standard errors cor-
responding to 95% confidence intervals. To evaluate the performance of the various recommenders, we
report precision@k and recall@k for k 2 {3, 5, 10, 20} (averaged over test users), and mean average
precision (mAP@20) 12.

5.8.3 Model comparison

First, we compare LINEAR-FLOW with the top performing models as discussed in the section 5.7.4. For
the additional three datasets, we compared the proposed method to the following baselines:

• User- and item-based nearest neighbour (U-KNN and I-KNN). For each dataset, we use Jaccard
and Cosine similarity metric and picked the best performing one.

• PURESVD of [Cremonesi et al., 2010], as discussed in Section 2.4.2.

• Weighted matrix factorisation (WRMF), as discussed in Section 2.4.2.

• MF-RSVD of [Tang and Harrington, 2013], as discussed in Section 2.4.2. We ran this method
with user and item based initialization, U-MF-RSVD and I-MF-RSVD, as discussed in Eq.
(2.16) and (2.15) respectively.

• SLIM, as discussed in Section 2.4.2. For computational convenience, we used the SGDReg vari-
ant [Levy and Jack, 2013], which removes the nonnegativity constraint. It is identical to SLIM
except that the nonnegativity constraint is removed.

10
http://grouplens.org/datasets/movielens/

11We choose 90%-10% split due to the sparsity of the datasets.
12The choice of map@20 instead of map@100 is due to computational reason. Further, it is resonable to do so as map

focuses on the top of the ranked list.

http://grouplens.org/datasets/movielens/

§5.8 Experiments and evaluation of LINEAR-FLOW model 67

We do not compare against LRec due to its memory complexity on a large dataset. For instance on
the PROPRIETARY-2 dataset, LRec requires ⇠260GB of memory. Also, we didn’t compare against the
methods, such as BPR, and LOGISTICMF, due to its inferiror performance as observed in Section 5.7.4.

5.8.4 Results and analysis

Evaluation of LINEAR-FLOW with other linear methods

In Table 5.9 – 5.11, we compare LINEAR-FLOW methods to state-of-the-art linear models. The result
demonstrates that LINEAR-FLOW yields competitive results, sometimes superiror, compared to the other
methods (with a significant reduction in computational cost, as we will show shortly). In the following
section, we thoroughly compare LINEAR-FLOW with state-of-the-art OC-CF methods on large-scale
datasets.

Table 5.9: Results on ML10M dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

I-SLIM 0.1751 ± 0.001 0.3421 ± 0.002 0.3101 ± 0.001 0.2590 ± 0.001 0.201 ± 0.001

LREC+SQ+`
1

+NN 0.1648 ± 0.003 0.3325 ± 0.003 0.3019 ± 0.004 0.2558 ± 0.003 0.1981 ± 0.002
LREC 0.1806 ± 0.001 0.3514 ± 0.004 0.3154 ± 0.001 0.2622 ± 0.002 0.2078 ± 0.001
LREC+SQ 0.1762 ± 0.001 0.3498 ± 0.002 0.3131 ± 0.001 0.2588 ± 0.001 0.2031 ± 0.001

I-LINEAR-FLOW 0.1854 ± 0.001 0.3525 ± 0.002 0.3194 ± 0.001 0.2666 ± 0.001 0.2111 ± 0.001
U-LINEAR-FLOW 0.1859 ± 0.001 0.3526 ± 0.002 0.3194 ± 0.003 0.2672 ± 0.002 0.2115 ± 0.002

Table 5.10: Results on LASTFM dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

I-SLIM 0.0309 ± 0.003 0.0539 ± 0.005 0.0491 ± 0.003 0.0404 ± 0.003 0.0316 ± 0.004

LREC+SQ+`
1

+NN 0.2030 ± 0.001 0.6492 ± 0.001 0.6147 ± 0.003 0.5580 ± 0.002 0.4801 ± 0.001
LREC 0.1833 ± 0.001 0.6010 ± 0.010 0.5700 ± 0.008 0.5173 ± 0.004 0.4527 ± 0.002
LREC+SQ 0.2038 ± 0.001 0.6498 ± 0.010 0.6185 ± 0.005 0.5589 ± 0.004 0.4875 ± 0.001

I-LINEAR-FLOW 0.1913 ± 0.001 0.6217 ± 0.006 0.5862 ± 0.006 0.5319 ± 0.004 0.4624 ± 0.002
U-LINEAR-FLOW 0.1869 ± 0.001 0.6210 ± 0.006 0.5854 ± 0.003 0.5274 ± 0.004 0.4592 ± 0.002

Table 5.11: Results on KOBO dataset. Reported numbers are the mean and standard errors across test
folds.

Method mAP@100 Prec@3 Prec@5 Prec@10 Prec@20

I-SLIM 0.1092 ± 0.018 0.058 ± 0.011 0.0393 ± 0.007 0.0253 ± 0.004 0.0164 ± 0.002

LREC+SQ+`
1

+NN 0.1250 ± 0.013 0.0610 ± 0.007 0.0442 ± 0.004 0.0289 ± 0.001 0.0184 ± 0.001
LREC 0.1247 ± 0.020 0.0605 ± 0.010 0.0437 ± 0.006 0.0284 ± 0.003 0.0179 ± 0.002
LREC+SQ 0.1282 ± 0.017 0.0619 ± 0.008 0.0462 ± 0.005 0.0294 ± 0.002 0.0189 ± 0.002

I-LINEAR-FLOW 0.0967 ± 0.008 0.0631 ± 0.004 0.0495 ± 0.002 0.0341 ± 0.001 0.0226 ± 0.001
U-LINEAR-FLOW 0.0969 ± 0.008 0.0631 ± 0.004 0.0497 ± 0.002 0.0342 ± 0.001 0.0226 ± 0.001

68 Linear Models for One-Class Collaborative Filtering

Evaluation of LINEAR-FLOW with baselines on large-scale datasets

Tables 5.12 – 5.14 summarize the results of our methods and the various baselines. The results demon-
strate that in terms of the quality of recommendation, the linear methods (LINEAR-FLOW and I-SLIM)
always outperform other methods in all datasets. LINEAR-FLOW and I-SLIM perform equally well
and there is little separation between them in terms of the quality of the recommendation. However
LINEAR-FLOW is much more efficient than SLIM, as we will show later. Also, unlike other methods,
the performance of LINEAR-FLOW is not sensitive to the choice of user vs. item based formulation.
From these tables, we make the following additional observations:

• Among the matrix factorisation methods, those that use Randomised SVD [Tang and Harrington,
2013] consistently performed the best. This is possibly due to the fact that SVD provides a good
initialization whereas matrix factorisation optimises a highly nonconvex bilinear objective and
is sensitive to the initialization and hyperparameters. In Table 5.12 – 5.14, we observe that the
performance of MF-RSVD varies significantly based on whether we initialize user or item latent
factors. Also, the factorisation methods do not directly provide item-to-item or user-to-user simi-
larity measures. Hence, they are not applicable when a recommendation of similar items or users
is needed.

• We observe that the neighbourhood models yield inferior results compared to the Linear models.
Also, the performance varies with the user and item based models. While they perform compet-
itively in the PROPRIETARY-2 and PROPRIETARY-1 datasets, they perform poorly on ML10M
dataset. Hence, we conclude that neighbourhood methods are not consistent with their perfor-
mance.

Table 5.12: Results on the PROPRIETARY-1 dataset. Reported numbers are the mean and standard errors
across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20

I-KNN 0.039 ± 0.001 0.029 ± 0.000 0.019 ± 0.000 0.011 ± 0.000 0.080 ± 0.001 0.097 ± 0.002 0.123 ± 0.002 0.152 ± 0.003 0.072 ± 0.001

U-KNN 0.051 ± 0.001 0.039 ± 0.001 0.025 ± 0.000 0.015 ± 0.000 0.107 ± 0.004 0.132 ± 0.004 0.168 ± 0.003 0.205 ± 0.004 0.097 ± 0.003

PURESVD 0.038 ± 0.001 0.027 ± 0.001 0.016 ± 0.000 0.009 ± 0.000 0.078 ± 0.002 0.091 ± 0.002 0.107 ± 0.003 0.125 ± 0.003 0.069 ± 0.002

WRMF 0.040 ± 0.001 0.029 ± 0.001 0.018 ± 0.001 0.011 ± 0.000 0.079 ± 0.002 0.096 ± 0.005 0.119 ± 0.005 0.147 ± 0.004 0.071 ± 0.003

U-MF-RSVD 0.050 ± 0.001 0.038 ± 0.000 0.025 ± 0.000 0.015 ± 0.000 0.100 ± 0.002 0.130 ± 0.002 0.169 ± 0.003 0.207 ± 0.004 0.096 ± 0.003

I-MF-RSVD 0.048 ± 0.001 0.036 ± 0.001 0.023 ± 0.000 0.014 ± 0.000 0.098 ± 0.003 0.121 ± 0.003 0.155 ± 0.004 0.189 ± 0.004 0.089 ± 0.003

I-SLIM 0.052 ± 0.001 0.039 ± 0.000 0.026 ± 0.000 0.016 ± 0.000 0.107 ± 0.003 0.134 ± 0.003 0.173 ± 0.004 0.212 ± 0.003 0.098 ± 0.003
U-LINEAR-FLOW 0.052 ± 0.001 0.039 ± 0.000 0.026 ± 0.000 0.016 ± 0.000 0.106 ± 0.004 0.135 ± 0.003 0.171 ± 0.003 0.212 ± 0.003 0.097 ± 0.003

I-LINEAR-FLOW 0.052 ± 0.001 0.040 ± 0.000 0.026 ± 0.000 0.016 ± 0.000 0.106 ± 0.003 0.136 ± 0.003 0.176 ± 0.003 0.214 ± 0.003 0.097 ± 0.003

Table 5.13: Results on the PROPRIETARY-2 dataset. Reported numbers are the mean and standard errors
across test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20

I-KNN 0.087 ± 0.000 0.064 ± 0.000 0.040 ± 2.497 ⇥ 10

�5

0.024 ± 2.216 ⇥ 10

�5

0.174 ± 0.000 0.210 ± 0.001 0.257 ± 0.001 0.298 ± 0.001 0.159 ± 0.001

U-KNN 0.084 ± 0.001 0.060 ± 0.000 0.037 ± 0.000 0.021 ± 7.640 ⇥ 10

�5

0.171 ± 0.001 0.203 ± 0.001 0.241 ± 0.001 0.270 ± 0.001 0.153 ± 0.001

WRMF 0.058 ± 0.001 0.044 ± 0.000 0.028 ± 0.000 0.017 ± 8.668 ⇥ 10

�5

0.115 ± 0.001 0.142 ± 0.001 0.180 ± 0.001 0.218 ± 0.001 0.105 ± 0.001

PURESVD 0.033 ± 0.000 0.024 ± 0.000 0.015 ± 0.000 0.009 ± 9.786 ⇥ 10

�5

0.069 ± 0.001 0.082 ± 0.000 0.102 ± 0.001 0.123 ± 0.001 0.062 ± 0.000

U-MF-RSVD 0.070 ± 0.000 0.050 ± 0.000 0.031 ± 6.921 ⇥ 10

�5

0.018 ± 2.443 ⇥ 10

�5

0.141 ± 0.001 0.166 ± 0.001 0.198 ± 0.000 0.228 ± 0.000 0.128 ± 0.001

I-MF-RSVD 0.088 ± 0.000 0.065 ± 0.000 0.041 ± 6.596 ⇥ 10

�5

0.024 ± 3.470 ⇥ 10

�5

0.172 ± 0.001 0.220 ± 0.001 0.269 ± 0.001 0.320 ± 0.001 0.158 ± 0.001

I-SLIM 0.089 ± 0.000 0.067 ± 0.000 0.043 ± 9.560 ⇥ 10�5 0.026 ± 4.358 ⇥ 10�5 0.180 ± 0.001 0.221 ± 0.001 0.279 ± 0.001 0.334 ± 0.001 0.165 ± 0.001
U-LINEAR-FLOW 0.089 ± 0.000 0.067 ± 0.000 0.043 ± 8.660 ⇥ 10

�5

0.026 ± 4.089 ⇥ 10

�5

0.176 ± 0.001 0.221 ± 0.001 0.274 ± 0.001 0.329 ± 0.001 0.161 ± 0.001

I-LINEAR-FLOW 0.089 ± 0.000 0.066 ± 0.000 0.043 ± 8.660 ⇥ 10

�5

0.026 ± 4.089 ⇥ 10

�5

0.178 ± 0.001 0.220 ± 0.001 0.272 ± 0.001 0.326 ± 0.001 0.160 ± 0.001

Runtime evaluation

To compare the training times of the various algorithms, we choose PROPRIETARY-2 and ML1M,
the two largest datasets for analysis. We benchmarked the training time of the algorithms by training

§5.8 Experiments and evaluation of LINEAR-FLOW model 69

Table 5.14: Results on the ML10M dataset. Reported numbers are the mean and standard errors across
test folds.

prec@3 prec@5 prec@10 prec@20 recall@3 recall@5 recall@10 recall@20 mAP@20

I-KNN 0.175 ± 0.001 0.151 ± 0.001 0.118 ± 0.001 0.088 ± 0.000 0.099 ± 0.000 0.139 ± 0.001 0.212 ± 0.001 0.307 ± 0.001 0.122 ± 0.000

U-KNN Out of Memory

WRMF 0.183 ± 0.001 0.156 ± 0.001 0.120 ± 0.000 0.089 ± 0.000 0.102 ± 0.000 0.143 ± 0.001 0.214 ± 0.001 0.306 ± 0.001 0.125 ± 0.000

PURESVD 0.122 ± 0.001 0.105 ± 0.001 0.084 ± 0.001 0.063 ± 0.000 0.073 ± 0.001 0.103 ± 0.001 0.157 ± 0.001 0.226 ± 0.001 0.084 ± 0.001

U-MF-RSVD 0.223 ± 0.001 0.189 ± 0.001 0.146 ± 0.001 0.107 ± 0.000 0.127 ± 0.000 0.176 ± 0.001 0.259 ± 0.001 0.366 ± 0.002 0.159 ± 0.000

I-MF-RSVD 0.223 ± 0.001 0.190 ± 0.001 0.146 ± 0.000 0.103 ± 0.000 0.125 ± 0.001 0.174 ± 0.001 0.260 ± 0.001 0.368 ± 0.002 0.159 ± 0.001

I-SLIM 0.221 ± 0.001 0.189 ± 0.001 0.146 ± 0.000 0.108 ± 0.000 0.126 ± 0.000 0.175 ± 0.001 0.261 ± 0.001 0.369 ± 0.002 0.158 ± 0.001

U-LINEAR-FLOW 0.227 ± 0.001 0.193 ± 0.001 0.148 ± 0.001 0.108 ± 0.000 0.129 ± 0.000 0.178 ± 0.001 0.262 ± 0.001 0.370 ± 0.002 0.160 ± 0.001
I-LINEAR-FLOW 0.224 ± 0.001 0.191 ± 0.001 0.147 ± 0.000 0.108 ± 0.000 0.128 ± 0.001 0.176 ± 0.001 0.261 ± 0.001 0.368 ± 0.002 0.159 ± 0.001

the model on a workstation with 128 GB of main memory and Intel(R) Xeon(R) CPU E5-2650 v2 @
2.60GHz with 32 cores. All of the methods exploit multi-core enabled via numpy linear algebra library,
whereas SLIM and WRMF attains parallelism via multiprocessing. For a fair comparison, we ran SLIM
and WRMF in parallel to use all available cores. In Table 5.15 we compare the runtime of the proposed
method with the baseline methods.

The results demonstrate that while LINEAR-FLOW offers the same quality of recommendation as
I-SLIM, its training time is an order of magnitude faster than I-SLIM. Among the baselines, I-SLIM
is computationally expensive and is the slowest among the baselines. Neighbourhood methods are com-
putationally cheap as they only involve sparse linear algebra, however as demonstrated previously, their
recommendation quality is not consistent and lagging behind the other methods. Further, factorisation
approaches that use randomised SVD have similar computational footprints as LINEAR-FLOW while
WRMF is much more computationally expensive.

Table 5.15: Training times of various methods on PROPRIETARY-2 and ML10M Dataset.

PROPRIETARY-2 ML1M
I-KNN 2.5 sec 10.7 sec
U-KNN 46.9 sec -
PURESVD 3 min 1 min 27 sec
WRMF 27 min 3 sec 12 min 38 sec
U-MF-SVD 3 min 10 sec 1 min 38 sec
I-MF-SVD 3 min 8 sec 1 min 39 sec
I-SLIM 32 min 37 sec 7 min 40 sec
U-LINEAR-FLOW 3 min 27 sec 1 min 44 sec
I-LINEAR-FLOW 3 min 32 sec 1 min 42 sec

Qualatitive analysis of learned similarities

In this Section, we provide a qualitative evaluation of the similarities, in particular item-item, learned
by our I-LINEAR-FLOW model. We use PROPRIETARY-3 , a dataset from a major stock image market
site13. The data provides whether a given user has clicked on a particular image category, and from these
our model can infer the similarity measure between the image categories. We choose this dataset for the
qualitative evaluation mainly because the category names are much easier to interpret compared to the
other datasets.

In Table 5.16, we show some examples14 of top-5 similar items learned by I-LINEAR-FLOW model.
We observe that the model discovers meaningful and explainable similarities, hence making it applicable
in similar item recommendations.

13The dataset sharing agreement with the provider restricts us from reporting the statistics and quantitative results. Hence, we do not report
summary statistics and quantitative results on this dataset

14Visit http://ssedhain.com/demos/Item-Item.html for interactive visualization

70 Linear Models for One-Class Collaborative Filtering

Table 5.16: Top-5 similar items learned by I-LINEAR-FLOW model.

Item Chemistry Chilling out Workers Unemployment Divorce and Conflict Museums

Similar items

Test and Analysis Beach Holidays Construction Job Search Depression Painting
Drug and Pills Tourism Teamwork Tax and Accounting Getting upset Statues
Health Care Relaxing Manufacturing Breaking the law Crying Artistic monuments
Scientists Hiking Service industry Money Loneliness Paris
Medical Equipments Consumer service Beaches Workers Rage Italy

Item Dance Vinegar Pearls Graduation Aging Homelessness

Similar items

Exercise Olive Oil Wealth High School Patients Depression
Running And Jumping Spice Wedding School Grand Parenting Loneliness
Disco And Clubs Salads Accessories Exams Disability Crying
Circus And Performing Garlic Gold Job Search Health Care Getting Upset
Gymnastics other Make Up E-Learning Doctors Risk And Danger

5.9 Conclusion

In this Chapter, we formulated LREC, a user-focused linear model for OC-CF. We demonstrated the
superior performance of LREC over the state-of-the-art baselines. Despite being embarrassingly par-
allel(parallelisable without distributed communication), LREC, like other linear models, suffers from
computational and space limitations. To address the limitations we formulated LINEAR-FLOW, a fast
low-dimensional regularised linear model, which levearges randomised SVD algorithm. We showed
that LINEAR-FLOW is computationally superior to the state-of-the-art models and yields competitive
performance.

So far, we discussed linear models for various recommendation tasks. However, as an inherent
limitation, linear models are not capable of capturing complex nonlinear relationship which might be
predictive of users’ preferences. In the next chapter, we investigate a general neural architecture for the
recommendation building upon the ideas from LINEAR-FLOW.

Chapter 6

Beyond Linear Models: Neural
Architecture for Collaborative Filtering

Up to this point in the dissertation, we have only discussed linear models for various recommendation
tasks. Despite the superior performance of linear models, such models are not capable of capturing
complex nonlinear relationships that may be predictive of users’ preferences. Recently, nonlinear meth-
ods, in particular, deep neural networks have gained a lot of attention for various machine tasks. Deep
learning has revolutionised many areas of machine learning, namely computer vision [Krizhevsky et al.,
2012], natural language processing [Mikolov et al., 2013] and speech recognition [Hinton et al., 2012] .
However, there has been very limited research in the application of deep learning for CF.

In this Chapter, we take a departure from linear models and investigate deep learning architectures
for CF. Building upon the ideas from LINEAR-FLOW and LoCo model, we identify CF as an auto-
encoding problem and propose a general nonlinear neural network CF architecture AUTOREC, bridging
the core of the thesis, Linear CF models, to the deep learning literature. We show significant gain in per-
formance using these models and thus opening the door for exploration of deep learning for collaborative
filtering.

6.1 Problem setting

In this Chapter, we take a departure from the previous chapters by investigating nonlinear models for
CF. Further, instead of focusing on a particular CF scenario, we focus on formulating a neural network
architecture for CF that generalises to the models discussed in previous Chapters. For experimentation,
we choose rating prediction setting where we have partially observed user-item historical rating data
R 2 Rm⇥n. Based on the observed rating data, the goal of a recommendation algorithm is to predict
ratings for the unobserved user-item pair.

6.2 Background : Neural network architectures

In this Section, we will discuss relevant neural network architectures in the context of CF.

6.2.1 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) is a two layered generative neural architecture consisting of a
hidden and visible layer, where each layer is composed of a number of nodes known as units. The RBM
is an energy-based model and is generally used with the binary inputs. Let r 2 Rd denote the input units
and h 2 Rk denote the hidden units, and W 2 Rd⇥k be the weights between them, then the energy is

71

72 Beyond Linear Models: Neural Architecture for Collaborative Filtering

+1 +1

.r
1

r
2

rd

h
1

h
2

h
3

W

µ b

r
3

Figure 6.1: Restricted Boltzmann Machine.

defined as:

E(r, h) = �Â
i

µiri � Â
j

bjhj � Â
i,j

rihjWij

where Wij is weight of connection between ri and hj; µi and bj are bias for visible and hidden units
respectively. The joint and marginal distribution of the hidden and visible unit is given by

p(r, h) =
1

Z
exp(�E(r, h))

p(r) =
1

Z Â
h

exp(�E(r, h))

where the partition function, Z, is defined as

Z = Â
r,h

exp(�E(r, h))

Given the visible layer, the hidden layer is defined as:

p(hj = 1|r) = g(bj + Â
i

riWij),

where g is some activation function, such as a sigmoid. Simlarly, given the hidden layer, the visible
layer is obtained as:

p(ri = 1|h) = f(µi + Â
j

hjWij)

where f is some activation function or normalisation function.

The parameter update rule for log-likelihood of the RBM model is defined as:

dWij =
∂ log p(r)

∂Wij
=
�
hri, hjidata � hri, hjimodel

�
,

where hri, hjidata denotes the frequency with which visible unit i and hidden unit j are on together when
the model is driven by observed data. On the other hand, hri, hjimodel is the expectation with respect to
the distribution defined by the model. Unlike the expectation w.r.t. to the data which is easy to compute,
the expectation w.r.t. the model requires alternate Gibbs sampling for a very long period of time [Hinton,

§6.2 Background : Neural network architectures 73

2012]. Hence, we typically approximate the expectation using a fast MCMC technique [Hinton, 2002,
Tieleman, 2008] known as Contrastive Divergence.

6.2.2 Autoencoders

Autoencoders [Bourlard and Kamp, 1988, Hinton and Salakhutdinov, 2006] are the widely used neural
architectures that consists of three layers, namely input, hidden, and output layers. Given a set of vectors
in {ri} 2 Rd, an autoencoder minimises the reconstruction error by optimiising

min

q
Â

i
`(r,R(ri; q)) + W(q), (6.1)

where R(r; q) is the reconstruction of input r, R(r; q) = f (g(rV + µ) · U + b) for activation functions
f (·), g(·). Here, q = {U, V, µ, b} for transformations U 2 Rk⇥d

, V 2 Rd⇥k, and biases µ 2 Rk
, b 2

Rd. This objective corresponds to an auto-associative neural network with a single, k-dimensional
hidden layer. The parameter q are learned using backpropagation [Rumelhart et al., 1988].

For squared loss and `
2

regularisation, we have:

min

q
Â

i
||r(i) �R(r(i); U, V))||2

2

+
l

2

· (||U||

2

F + ||V||

2

F), (6.2)

For, identity activation function f (·), g(·), autoencoder corresponds to Principal Component Anal-
ysis (PCA) [Baldi and Hornik, 1989].

+1

.r
1

r
2

rd

h
1

h
2

h
3

V

b

r
3

.r̂
1

r̂
2

r̂dr̂
3

+1

µ

U

Figure 6.2: Autoencoder model.

6.2.3 RBM for collaborative filtering (RBM-CF)

RBM based collaborative filtering (RBM-CF) [Salakhutdinov et al., 2007] treats each user as an input
to the model. In RBM-CF, each user u 2 U = {1 . . . m} is represented by a partially observed vector
Ru:

= (Ru1

, . . . Run). Since the input is partially observed, standard RBM training, as discussed in
6.2.1, cannot be applied. Further, for rating prediction, we cannot impute 0 for unobserved entries as
the model will learn to predict ⇠ 0, which is not desirable. RBM-CF incorporates partially observed
input by following an alternative training strategy where for each user u, the weights associated with the
observed entries are only updated as illustrated in Figure 6.4.

74 Beyond Linear Models: Neural Architecture for Collaborative Filtering

+1

+1

.

h
1

h
2

hk

W

µ b

W

. . .

M
iss

in
g

M
iss

in
g

Q(u)

Ru:

()Ru,1

= 3 Ru,2

= ? Ru,3

= 5 Ru,n = ?

W

Figure 6.3: RBM based collaborative filtering model. The solid weights indicate the weights that are
updated while training for the input Ru:

.

Let us consider integer 1 rating matrix R 2 {1, ...L}m⇥n. First, to incorporate non-binary ratings,
RBM-CF maps Ru:

to a binary indicator matrix, Q(u)
2 {0, 1}

L⇥n, where

Q(u)
li =

(
1 Rui = l
0 otherwise.

RBM-CF uses sigmoid activation for hidden units and softmax for the input. The conditional probablity
of a hidden unit is given as:

p(hj = 1|Q(u)) = s(bj +
L

Â
l

n

Â
i

Q(u)
li Wl

ij).

Similarly, the conditional probability of a visible unit is given as:

p(Q(u)
li = 1|h) =

exp(µl
i + Âk

j Wl
ijhj)

ÂL
l exp(µl

i + Âk
j Wl

ijhj)

The optimisation method is the same as discussed in 6.2.1 where only the weights associated with
the observed entries are updated for each training instance. Once the model is trained, the rating Rui can
be computed as

Rui =
L

Â
l=1

p(Q(u)
li = 1|h) · l

We can define two class of RBM-CF model based on the input, namely U-RBM-CF and I-RBM-
CF. While U-RBM-CF takes Ru:

as input, I-RBM-CF takes Ri: as input. In this Chapter, we will show
that the choice of model can significantly affect the performance.

There are several limitations of the RBM-CF model. First, RBM-CF proposes a generative, proba-
bilistic method that estimates parameters by maximising the log likelihood, instead of root mean square
error (RMSE) which is a canonical measure for rating prediction problem. Second, it estimates parame-

1Real valued rating can also be used via binning.

§6.3 AutoRec: Autoencoders meet collaborative filtering 75

ters using slow contrastive divergence optimisation. Third, it is only applicable for discrete ratings, and
requires binning for real valued inputs. For l possible ratings, this implies nkr or (mkr) parameters for
user- (item-) based RBM.

6.3 AutoRec: Autoencoders meet collaborative filtering

In this section, we introduce AUTOREC, an autoencoder based model for CF. As in RBM-CF model,
we can define user and item based models. Here, we discuss a user based AUTOREC model2. The
user based AUTOREC model optimises Equation 6.3 for a set of user vectors, Ru:

, with one important
change. We account for the fact that Ru:

is partially observed by only updating during backpropagation
those weights that are associated with observed inputs, as in RBM-CF. Formally, the objective function
for the User-based AUTOREC (U-AUTOREC), is defined as:

min

U,V
Â

i
||Ru:

�R(Ru:

; U, V))||2O +
l

2

· (||U||

2

F + ||V||

2

F), (6.3)

where || · ||

2

O means that we only consider the contribution of observed ratings; R(R; q) is the re-
construction of input Ru:

,

R(r; q) = g (f (rV + µ) · U + b)

for activation functions f (·), g(·). Further, item-based AUTOREC (I-AUTOREC) is defined in a similar
way with R

:i as input. In total, U-AUTOREC requires estimation of (2nk+ n+ k), I-AUTOREC requires
estimation of (2mk + m + k) parameters.

We optimise AUTOREC parameters using RPROP [Riedmiller and Braun, 1992] algorithm, which
updates the neural network parameters, W, using following update rule:

Wt+1

ij = W(t)
ij � sgn

0

@ ∂

∂W(t)
ij

1

ADt
ij,

where Dt
ij is defined as:

Dt
ij =

8
>>>><

>>>>:

h+
· D(t�1)

ij if ∂`

∂W(t�1)
ij

·

∂

∂W(t)
ij

> 0

h�

· D(t�1)
ij if ∂`

∂W(t�1)
ij

·

∂

∂W(t)
ij

< 0

0 otherwise

where 0 < h� < 1 < h+. In a nutshell, RPROP adjust the weights update by checking whether the
gradient at t and t � 1 are in the same direction or not , which approximates the curvature of the loss
function at given time t.

AUTOREC is distinct to existing CF approaches. Compared to the RBM-based CF model (RBM-
CF), there are several differences. First, RBM-CF proposes a generative, probabilistic model based on
restricted boltzmann machines, while AUTOREC is a discriminative model based on autoencoders. Sec-
ond, RBM-CF estimates parameters by maximising log likelihood, while AUTOREC directly minimises
RMSE, the canonical performance in rating prediction tasks. Third, training RBM-CF requires the use

2Instead of autoencoding Ru:

as in user based method, item based method autoencodes R
:i

76 Beyond Linear Models: Neural Architecture for Collaborative Filtering

+1

.Ru,1

Ru,2

Ru,n

h
1

h
2

h
3

V

b

Ru,3

.ˆRu,1

ˆRu,2

ˆRu,n
ˆRu,3

+1

µ

U

Figure 6.4: AUTOREC model. The dark nodes in the input layer correspond to the observed ratings.

of contrastive divergence, whereas training AUTOREC requires the comparatively faster gradient-based
backpropagation. Finally, RBM-CF is only applicable for discrete ratings, and estimates a separate set
of parameters for each rating value. For r possible ratings, this implies nkr or (mkr) parameters for user-
(item-) based RBM. AUTOREC is agnostic to r and hence requires fewer parameters. Fewer parameters
enables AUTOREC to have less memory footprint and makes it less prone to overfitting.

Compared to matrix factorisation (MF) approaches, which embed both users and items into a shared
latent space, the item-based AUTOREC model only embeds items into latent space. Further, while
MF learns a linear latent representation, AUTOREC can learn a nonlinear latent representation through
activation function g(·).

To our knowledge, ours is the first contribution to introduce autoencoders in the context of collabo-
rative filtering. However, there are recent independent works in applying autoencoders for collaborative
filtering [Wang et al., 2015, Wu et al., 2016, Li et al., 2015].

6.4 Relation to existing models

In this section, we discuss the relation of AUTOREC to existing models. First, for the convenience of
analysis, we write AUTOREC, with linear activations, as a generalised neural network equation defined
in terms of input and output

min

U,V
Â

i
||R � MVU||

2 +
l

2

· (||U||

2

F + ||V||

2

F). (6.4)

where R is a target output (preference matrix), and M is an input matrix. When M = R, this corresponds
to standard AUTOREC equation i.e.

min

U,V
Â

i
||R � f (g(RV)U)||2 +

l

2

· (||U||

2

F + ||V||

2

F). (6.5)

In Figure 6.5, we outline a generalised neural network architecture that defines models for various CF
scenarios, as we will show shortly.

§6.4 Relation to existing models 77

+1

.Mu,1

Mu,2

Mu,d

h
1

h
2

h
3

V

b

Mu,3

.ˆRu,1

ˆRu,2

ˆRu,d
ˆRu,3

+1

µ

U

Figure 6.5: Generalised neural architecture for CF. For M = R, it is equivalent to AUTOREC model;
For M = X, it is equivalent to LoCo model.

6.4.1 Relation to matrix factorisation

In this section, we define MF models in terms of generalised neural architecture. First, we define users’
one hot encoding matrix I 2 Rm⇥m. In other words, I is an identify matrix. For an input I, we have

min

U,V
Â
u
||Ru:

� Iu:

VU||

2 +
l

2

· (||U||

2

F + ||V||

2

F)

=min

U,V
Â
u
||Ru:

� Vu:

U||

2 +
l

2

· (||U||

2

F + ||V||

2

F)

=min

U,V
Â
u,i
(Rui � Vu:

U
:i)

2 +
l

2

· (||U||

2

F + ||V||

2

F),

(6.6)

where V 2 Rm⇥k and V 2 Rk⇥n. In Equation 6.6, we see matrix factorisation model is equivalent to
AUTOREC model with indicator matrix N as an input.

In Table 6.1, we summarise how various models can be expressed in the proposed architecture. In
general, AUTOREC is more powerful compared to MF as it allows nonlinearity via activation functions.
Further, it allows building complex models by constructing deep architectures.

Input (M) Target (R) Model
I R MF
R R AUTOREC
X R LoCo

Table 6.1: Expressing various CF model in a generalised neural architecture. Here, I is an identity
matrix, R is a user-item preference matrix and X is a feature matrix.

6.4.2 Relation to LRec and LINEAR-FLOW

AUTOREC is closely related to LRec. To see the connection, we rewrite LRec with squared loss as

argmin

W
k

R � RW
k

2

F + l
k

W
k

2

F (6.7)

Comparing Equation 6.7 and Equation 6.5, we see AUTOREC is equivalent to LRec with a factorised

78 Beyond Linear Models: Neural Architecture for Collaborative Filtering

parameters i.e. W ⇠ UV. Similarly, AUTOREC is also closely related with LINEAR-FLOW model.To
see the connection, we rewrite LINEAR-FLOW, as discussed in section 5.6:

argmin

Z
k

R � RQkZ
k

2

F + l
k

Z
k

2

F , (6.8)

where R ⇡ PkSQT
k is given by SVD. Now, comparing Equation 6.5 with Equation 6.8, we see LINEAR-

FLOW is equivalent to AUTOREC model where V is kept fixed as Qk and U is learned minimising
squared error via multi-regression.

The main advantage of AUTOREC over LRec and LINEAR-FLOW is that it allows nonlinear model-
ing via the choice of activation function, and hence is more flexible in capturing nonlinear relationship
that may exist in the data.

6.4.3 Relation to LoCo

To compare AUTOREC model with LoCo, we rewrite the LoCo objective as (discussed in Section 4.3.2):

min

Z
||R(tr)

� X(tr)QkZ||2F + l||Z||2F (6.9)

where X(tr)
⇠ Pk Âk QT

k is given by SVD. While AUTOREC learns to auto-associate the preferences
matrix R, LoCo learns to map user or item features, X, to the preference matrix R. Equation 6.4
corresponds to LoCo when the input to the model is a feature matrix i.e M = X, .

6.5 AutoRec for OC-CF

The key challenge in applying AUTOREC model for OC-CF setting is in scalability. In OC-CF setting,
we assume all unobserved entries as 0 for the obvious reason as discussed in Chapter 2. Hence, we need
to compute the gradients for all entries of R which makes the learning computationally expensive. We
can employ negative sub-sampling to address this limitation. However, it is non-trivial to come up with
a sub-sampling strategy that yields competitive results.

6.6 Experiments and evalution

In this section, we discuss the dataset used for experiments, experimentation methodology, and report
detailed experimental results.

6.6.1 Data description

In this Chapter, we evaluate the performance of the models for rating prediction task on three real-world
datasets.

• ML1M and ML10M are the standard datasets3 for CF. ML1M consists of ⇠ 6, 000 users, ⇠
3, 700 items and ⇠ 1 million ratings. Similarly, ML10M consists of ⇠ 70, 000 users, ⇠ 10, 000

items and ⇠ 10 million ratings.

3
http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/

§6.6 Experiments and evalution 79

• NETFLIX is the popular large scale dataset from the Netflix prize competition Bennett et al.
[2007b]. NETFLIX dataset consists of ⇠ 480, 000 users, ⇠ 17, 000 items and ⇠ 100 million
ratings.

We summarise the datasets in the Table 6.2.

Table 6.2: Summary of datasets used in evaluation.

Dataset m n ratings
ML1M 6,040 3,706 1,000,209
ML10M 69,878 10,677 10,000,054
NETFLIX 480,189 17,770 100,480,507

We split the data into random 90% � 10% train-test sets, and hold out 10% of the training set for
hyperparameter tuning. We repeat this splitting procedure 5 times and report average RMSE. In each
experiment, 95% confidence intervals on RMSE were ±0.003 or less . For all baselines, we tuned
the regularisation strength l 2 {0.001, 0.01, 0.1, 1, 100, 1000} and the appropriate latent dimension
k 2 {10, 20, 40, 80, 100, 200, 300, 400, 500}.

6.6.2 Model comparison

In this Section, we discuss various baselines we used to compare with AUTOREC model, I-AUTOREC

and U-AUTOREC:

• BIASEDMF of equation 2.7, as discussed in Section 2.4.1.

• I-RBM-CF and U-RBM-CF as discussed in Section 6.2.3.

• LLORMA as discussed in Section 2.4.1. Essentially, LLORMA weights 50 different local matrix
factorisation models.

6.6.3 Results and analysis

Evaluation of User and Item based RBM-CF and AUTOREC models

In Table 6.3, we compare user and item based RBM-CF andAUTOREC models. We observe that item
based models perform significantly better than user based models. This is likely since the average
number of ratings per item is much more than per user. The high variance in the number of ratings per
user leads to less reliable prediction for user-based models. Further, I-AUTOREC yields the best results.

Table 6.3: Comparison of the RMSE of AUTOREC and RBM-CF models.

ML-1M ML-10M
U-RBM 0.881 0.823
I-RBM 0.854 0.825
U-AutoRec 0.874 0.867
I-AutoRec 0.831 0.782

80 Beyond Linear Models: Neural Architecture for Collaborative Filtering

Does performance of AUTOREC vary with the choice of optimisation algorithm?

In Table 6.4, we compare the performance of I-AUTOREC on ML1M dataset for four different opti-
misation methods, namely (a) Stochastic Gradient Descent (SGD), (b) Batch Gradient Descent (BGD),
(c) RProp, (d) LBFGS. We see that the performance of AutoRec varies significantly with the choice of
the optimization technique. Methods that consider local curvature (LBFGS and RProp) gave the best
performance and faster convergence, while gradient based first order methods(SGD and Batch gradi-
ent descent) performed poorly. This may be due to pathological curvature in the objective function.
Hence, it highlights the importance of choosing a right optimization technique while training neural
network models. Even though LBFGS yields better results than RProp, we choose RProp for rest of our
experiments due to scalability issue.

RMSE
SGD 0.8720
BGD 0.8586
RPROP 0.8305
LBFGS 0.8284

Table 6.4: RMSE of the item based AutoRec model on the ML1Mdataset for various optimization
methods.

Variation of AUTOREC performance with the choice of activation functions f (·), g(·)

In Table 6.5, we compare the performance of I-AUTOREC for various activation functions in hidden and
output layers. We observe that the nonlinearity in hidden layer (via g(·)) is critical for good performance
of the models. This indicates AUTOREC’s potential advantage over bilinear MF methods. Further, we
experimented with Rectifier Linear Units(ReLU), however they performed worse than sigmoid activa-
tion. In the following experiments, we use identify f (·) and sigmoid g(·) functions.

Table 6.5: RMSE for I-AUTOREC model with choices of linear and nonlinear activation functions on
ML1M dataset.

f (·) g(·) RMSE
Identity Identity 0.872
Sigmoid Identity 0.852
Identity Sigmoid 0.831
Sigmoid Sigmoid 0.836

Variation of performance of AUTOREC with the number of hidden units

In Figure 6.6, we evaluate the perfomrance of AUTOREC model as the number of hidden units varies. We
note that performance steadily increases with the number of hidden units, but with diminishing returns.
In the following experiments, we use k = 500 for AUTOREC.

Comparison of AUTOREC with the baselines

In Table 6.6, we compare the performance of AUTOREC with all baselines. We observe AUTOREC con-
sistently outperforms all baselines, except for comparable results with LLORMA on ML10M dataset.

§6.7 Conclusion 81

0 100 200 300 400 500
numEer Rf hidden units

0.82

0.83

0.84

0.85

0.86

0.87

5
0

6
E

Figure 6.6: RMSE of I-AUTOREC on ML1M as the number of hidden units k varies.

Competitive performance with LLORMA is significant, as the latter involves weighting 50 different lo-
cal matrix factorisation models, whereas AUTOREC only uses a single latent representation via a neural
net autoencoder.

Table 6.6: Comparison of I-AUTOREC with baselines on MovieLens and Netflix datasets. We remark
that I-RBM-CF did not converge after one week of training. LLORMA’s performance is taken from Lee
et al. [2013].

ML-1M ML-10M Netflix
BiasedMF 0.845 0.803 0.844
I-RBM 0.854 0.825 -
U-RBM 0.881 0.823 0.845
LLORMA 0.833 0.782 0.834
I-AutoRec 0.831 0.782 0.823

Deep AUTOREC : Do deep extensions help?

We developed a deep version of I-AUTOREC with three hidden layers of (500, 250, 500) units, each
with a sigmoid activation. We used greedy pre-training and then fine-tuned using RProp algorithm.
On ML1M, RMSE reduces from 0.831 to 0.827 indicating potential for further improvement via deep
AutoRec. This indicates the further potential of deep architectures for collaborative filtering problems.
There has been some work in investigating deep learning models for collaborative filtering [Wang et al.,
2015, Wu et al., 2016, van den Oord et al., 2013]. However, most of the success of deep learning methods
is in dense input data. Hence, it is still an open question to leverage the full potential of deep learning
techniques on sparse input which requires further careful investigation.

6.7 Conclusion

In this Chapter, we formulated AUTOREC, a neural architecture that generalises to various CF methods
contributed in earlier Chapters. Further, we demonstrated that the proposed model yields substantial
improvement over the state-of-art models for rating prediction task.

Despite its superior performance, one of the key limitations of the AUTOREC model is that, for
OC-CF where the unobserved preferences are treated as negative feedback, learning is inefficient. In

82 Beyond Linear Models: Neural Architecture for Collaborative Filtering

particular, unlike MF that leverages efficient closed-form solution via Alternate Least Squares(ALS) op-
timisation, AUTOREC’s parameters are learned jointly using gradient based optimisation. So, it requires
further investigation for efficient optimisation and effective negative sampling techniques. Also, it is
unclear that how much we gain in performance by adding layers. Further, we need to investigate emerg-
ing deep learning architectures, such as Recurrent Neural Networks (RNN) and Convolutional Neural
Networks (CNN), for their potential in CF problems.

Chapter 7

Conclusion

7.1 Summary of Contributions

In this dissertation, we have investigated linear models for different collaborative filtering scenarios that
address all collaborative filtering desiderata, namely being (1) applicable to wide range of recommenda-
tion scenarios, (2) learning-based, (3) amenable to convex optimisation, and (4) scalable. We summarise
our contributions as follow:

• In Chapter 3, we investigated the Social-CF problem. We addressed the limitations of existing
Social-CF algorithms by formulating a linear model, Social Affinity Filtering, that leverages fine-
grained user interactions and activities in a social network. We presented a thorough experimental
evaluation to demonstrate the superior performance of proposed method and the predictive power
of fine-grained social signals.

• In Chapter 4, we investigated linear models for a cold-start recommendation in the context of
OC-CF settings. Building upon the insights from Chapter 3, we proposed two large-scale linear
models, namely (a) Generalised neighborhood-based model, and (2) LoCo, which leverages high
dimensional social information for cold-start recommendation. We demonstrated the superior
performance of proposed methods in thorough experiments.

• In Chapter 5, we investigated linear models for OC-CF. We proposed LRec, a user-focused linear
CF model that generates user-personalised recommendation by training a convex unconstrained
objective. Despite being embarrassingly parallelizable across the users, LRec requires solving a
large number of regression subproblems and requires quadratic memory limiting its applicability
to large-scale problems. To address these limitations, we proposed low dimensional regression
model LINEAR-FLOW which leverages randomised SVD for fast dimensionality reduction. We
presented detailed experimental results to demonstrate the efficacy of LRec and LINEAR-FLOW

on a wide range of real-world datasets.

• In Chapter 6, we took a departure from linear models by investigating deep learning architectures
for collaborative filtering. We proposed a generalised autoencoder based architecture, AUTOREC,
which yields substantial improvement over the state-of-the-art models for rating prediction prob-
lem. Further, we discussed how various CF models can be expressed as special cases of the
AUTOREC framework elucidating the flexibility of AUTOREC.

In Table 7.1, we concisely summarise the contribution of the thesis.

83

84 Conclusion

Model Recommendation Model parameters

Linear

SAF Xdiag(w)XTR w
LoCo X(te)VkZ Z
LREC WR W
LINEAR-FLOW ZPT

k R Z
Non Linear AUTOREC f (U · g(VR)) U, V

Table 7.1: Summary of the proposed models.

7.2 Future work

While this thesis addresses the wide range of collaborative filtering scenarios in a unified linear frame-
work, there are many unexplored areas for future research as we discuss next.

7.2.1 Exploration of emerging deep learning architectures

In Chapter 6, we demonstrated the efficacy of AUTOREC model for CF. However, in the recent years,
advance neural architectures, such as Recurrent Neural Network (RNN) [Goller and Kchler, 1996] and
Convolutional Neural Network (CNN) [Krizhevsky et al., 2012, Simard et al., 2003], have been very
successful for various machine learning tasks. In particular, RNNs are popular in modeling sequential
data. Typically, in many CF problems, users’ actions such as items purchased, clicks, songs listened,
etc. can be treated as a sequence of events. In such a setting, RNN’s can be employed to learn users
behaviour. Further, RNN’s can incorporate contextual information by using recently proposed attention
models [Xu et al., 2015]. Similarly, learning meaningful representation of users and items, for instance
using CNN to learn features from the image of the items, can yield better recommendation algorithms.
Such features can be used in content-based as well as CF models.

7.2.2 Incorporating temporal information

Temporal patterns are very important in personalisation [Koren, 2010a, Lathia et al., 2009]. For instance,
an early teen Netflix user might not be interested in the same genre of a movie she used to watch as a kid;
a user might not be interested in summer clothing in winter. Despite it’s relevance in personalisation,
there has been very limited work in leveraging temporal signals in collaborative filtering. One of the
limitations of the existing approaches is that there is no principle objective and model specification for
which learning temporal patterns is tractable. Since users’ behaviour and preferences drift over time,
it is highly desirable to have a model that automatically adapts with the shift of users preferences over
time.

7.2.3 Ensemble methods for OC-CF

Ensemble methods involve combining the predictions of multiple models. Such models are widely used
in practice due to their superior performance [Sollich and Krogh, 1996, Adeva et al., 2005]. Further, they
have low model variance making it ideal for real world problems. In Netflix competition, the winning
model was an ensemble of hundreds of different CF models [Koren, 2009].

One of the problems with OC-CF is in combining various CF models. While rating prediction
models optimise the objective function that directly corresponds to evaluation metrics (such as RMSE),
most OC-CF methods don’t optimise ranking objectives due to computational reasons. Hence, it is
non-trivial to combine the recommendations from various OC-CF models. Further, rank aggregation

§7.3 Conclusion 85

methods [Dwork et al., 2001] can be applied to merge the ranked list from multiple methods. Despite
being practically pervasive, there has been a very limited research in this area and it is not clear as to
how to combine different OC-CF models in an effective way. Hence, this requires further investigation.

7.2.4 Models for location aware recommendation

Due to the ubiquity of mobile devices, location has become one of the important aspects of personaliza-
tion. For instance, a shopper might be interested in offers from nearby shops; a person would be more
interested in nearby restaurants. Despite the abundance of location data, there has been very limited
work in leveraging such signals in the context of recommender systems [Levandoski et al., 2012, Bao
et al., 2012, Ye et al., 2010, Wang et al., 2013]. It is not clear as how to incorporate location data into
existing collaborative filtering models in a meaningful way. Further, the trade-off between preferences
and distance itself requires personalisation. Hence, this requires further investigation.

7.3 Conclusion

This thesis demonstrates the efficacy of linear models for various collaborative filtering scenarios. Our
main contribution is in the formulation of a unified linear model for collaborative filtering and bridging
the core of the thesis to deep learning literature. Our experimental results showed that our models
outperform existing methods yielding the state-of-the-art performance. We hope that the presented work
encourages further investigation of linear models for recommendation and engender future research in
the application of deep learning architectures for collaborative filtering.

86 Conclusion

Appendix A

Randomised SVD

SVD is the archetypal matrix factorisation algorithm and has been widely used in machine learning for
dimensionality reduction. However, SVD is computationally expensive and not scalable to large scale
datasets. It has been recently shown that SVD can be significantly scaled up, at a negligible cost in
performance, by randomization [Halko et al., 2011]. We outline the randomised SVD of the matrix R in
Algorithm 1

Algorithm 1 Given R 2 Rm⇥n, compute approximate rank-k SVD; R ⇡ PkSkQk

1: procedure RSVD(R, k)
2: Draw n ⇥ k Gaussian random matrix W
3: Construct n ⇥ k sample matrix A = RW
4: Construct m ⇥ k orthonormal matrix Z, such that A = ZX
5: Constuct k ⇥ n matrix B = ZTR
6: Compute the SVD of B, B = ˆPkSkQk
7: Compute Pk = Z ˆPk
8: return (Pk, Sk, Qk)
9: end procedure

87

88 Randomised SVD

Chapter 8

Bibliography

G. J. J. Adeva, U. B. Cerviño, and R. A. Calvo. Accuracy and Diversity in Ensembles of Text Categoris-
ers. CLEI Electronic Journal, 9(1), 2005. 84

D. Agarwal and B.-C. Chen. Regression-based latent factor models. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 19–
28, New York, NY, USA, 2009. ACM. 40

M. S. Amin, B. Yan, S. Sriram, A. Bhasin, and C. Posse. Social referral: Leveraging network connec-
tions to deliver recommendations. In Proceedings of the Sixth ACM Conference on Recommender
Systems, RecSys ’12, pages 273–276, New York, NY, USA, 2012. ACM. 1

A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. Effects of user similarity in social media.
In Proceedings of the fifth ACM international conference on Web search and data mining, WSDM
’12, pages 703–712, New York, NY, USA, 2012. ACM. 16, 37

S. Asur, B. A. Huberman, G. Szabo, and C. Wang. Trends in social media: Persistence and decay. In
Proceedings for the fifth International AAAI Conference on Weblogs and Social Media, 2011. 36

L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social
networks. In Proceedings of the fourth ACM international conference on Web search and data mining,
WSDM ’11, pages 635–644, New York, NY, USA, 2011. ACM. 1

L. Backstrom, E. Bakshy, J. Kleinberg, T. Lento, and I. Rosenn. Center of attention: How facebook
users allocate attention across friends. In Proceedings for the fifth International AAAI Conference on
Weblogs and Social Media, 2011. 36

E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Everyone’s an influencer: quantifying influence
on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining,
WSDM ’11, pages 65–74, New York, NY, USA, 2011. ACM. 36

E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion.
Facebook report, http://www.scribd.com/facebook, 2012. 36

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2(1):53 – 58, 1989. 73

J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-aware recommendation using
sparse geo-social networking data. In Proceedings of the 20th International Conference on Advances
in Geographic Information Systems, SIGSPATIAL ’12, pages 199–208, New York, NY, USA, 2012.
ACM. 85

89

90 Bibliography

R. M. Bell and Y. Koren. Improved neighborhood-based collaborative filtering. In 1st KDDCup’07, San
Jose, California, 2007. 2, 9, 12

J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk. KDD cup and workshop 2007. SIGKDD Explo-
rations Newsletter, 9(2):51–52, Dec. 2007a. 59, 66

J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In KDD Cup and Workshop in conjunction
with KDD, 2007b. 7, 9, 18, 79

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song dataset. In 12th Interna-
tional Conference on Music Information Retrieval (ISMIR 2011), 2011. 59

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., 2006. 61

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition.
Biological Cybernetics, 59(4):291–294, 1988. 73

P. B. Brandtzg and O. Nov. Facebook use and social capital — a longitudinal study. In Proceedings for
the fifth International AAAI Conference on Weblogs and Social Media, ICWSM’11, 2011. 16, 37

A. Buja, W. Stuetzle, and Y. Shen. Loss functions for binary class probability estimation and classifi-
cation: Structure and applications, manuscript, available at www-stat.wharton.upenn.edu/ buja, 2005.
53

B. Cao, N. N. Liu, and Q. Yang. Transfer learning for collective link prediction in multiple heterogenous
domains. In Proceedings of the 27th international conference on machine learning (ICML-10), pages
159–166, 2010. 15

Ò. Celma. Music Recommendation and Discovery in the Long Tail. PhD thesis, Universitat Pompeu
Fabra, Barcelona, 2008. 59

J. Chang, I. Rosenn, L. Backstrom, and C. Marlow. epluribus : Ethnicity on social networks. pages
18–25, 2010. 36

P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommen-
dation tasks. In RecSys’10, 2010. 13, 54, 56, 60, 63, 66

P. Cremonesi, R. Turrin, and F. Airoldi. Hybrid algorithms for recommending new items. In HetRec
’11, pages 33–40, New York, NY, USA, 2011. ACM. 13

P. Cui, F. Wang, S. Liu, M. Ou, S. Yang, and L. Sun. Who should share what?: item-level social
influence prediction for users and posts ranking. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, SIGIR ’11, pages 185–194, New
York, NY, USA, 2011. ACM. 4, 16, 21, 29, 37

J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Liv-
ingston, and D. Sampath. The youtube video recommendation system. In Proceedings of the fourth
ACM conference on Recommender systems, RecSys ’10, pages 293–296, New York, NY, USA, 2010.
ACM. 1

F. Denis. PAC learning from positive statistical queries. In Algorithmic Learning Theory (ALT), volume
1501 of Lecture Notes in Computer Science, pages 112–126. Springer Berlin Heidelberg, 1998. 53

91

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In Proceed-
ings of the 10th International Conference on World Wide Web, WWW ’01, pages 613–622, New York,
NY, USA, 2001. ACM. 85

C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08,
pages 213–220, New York, NY, USA, 2008. ACM. 53

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear
classification. Journal of Machine Learning Research, pages 1871–1874, 2008. 28, 52

J. Fürnkranz and E. Hüllermeier. Preference Learning. Springer-Verlag, New York, NY, USA, 1st
edition, 2010. 14

Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme. Learning attribute-to-
feature mappings for cold-start recommendations. In Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM ’10, pages 176–185, Washington, DC, USA, 2010. IEEE Com-
puter Society. 15, 40, 41, 46

Z. Gantner, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. Personalized ranking for non-
uniformly sampled items. In Proceedings of KDD Cup 2011 Competition, KDD ’11, pages 231–247,
2012. 15, 54

E. Gilbert and K. Karahalios. Predicting tie strength with social media. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’09, pages 211–220, New York, NY, USA,
2009. ACM. 37

S. Goel, D. J. Watts, and D. G. Goldstein. The structure of online diffusion networks. In EC, EC ’12,
pages 623–638, New York, NY, USA, 2012. ACM. 36

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information
tapestry. ACM Communications, 35(12):61–70, Dec. 1992. 8, 9

C. Goller and A. Kchler. Learning task-dependent distributed representations by backpropagation
through structure. In Proceedings of the IEEE International Conference on Neural Networks, ICNN-
96, pages 347–352. IEEE, 1996. 84

B. Golub and M. O. Jackson. Using selection bias to explain the observed structure of internet diffusions.
Proc. Nat. Academy Sci., 107, 2010. 36

C. A. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms, business value, and
innovation. ACM Trans. Manage. Inf. Syst., 6(4):13:1–13:19, Dec. 2015. 1

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: the who to follow service at twitter.
In Proceedings of the 22nd international conference on World Wide Web, WWW ’13, pages 505–
514, Republic and Canton of Geneva, Switzerland, 2013. International World Wide Web Conferences
Steering Committee. 1

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011. 57,
58, 87

92 Bibliography

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22Nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’99, pages 230–237, New York, NY,
USA, 1999. ACM. 2, 9, 12, 54

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recom-
mender systems. ACM Trans. Inf. Syst., 22(1):5–53, Jan 2004. 9

R. Hill and R. Dunbar. Social network size in humans. Human Nature, 14(1):53–72, 2003. 36

G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition.
Signal Processing Magazine, 2012. 3, 71

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,
14(8):1771–1800, Aug. 2002. 73

G. E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines, pages 599–619. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. 72

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006. 73

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In Proceed-
ings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM ’08, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society. 14, 56, 57

M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in
social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys
’10, 2010. 15

C. C. Johnson. Logistic matrix factorization for implicit feedback data. In NIPS 2014 Workshop on
Distributed Machine Learning and Matrix Computations, 2014. 59, 60

G. King and L. Zeng. Logistic regression in rare events data. Political Analysis, 9(2):137–163, 2001. 54

Y. Koren. Factorisation meets the neighborhood: A multifaceted collaborative filtering model. In Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’08, pages 426–434, New York, NY, USA, 2008. ACM. 10

Y. Koren. The bellkor solution to the netflix grand prize, 2009. 84

Y. Koren. Collaborative filtering with temporal dynamics. Commun. ACM, 53(4):89–97, Apr. 2010a. 84

Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transaction of
Knowledge Discovery and Data, 4(1):1:1–1:24, 2010b. 1, 8

Y. Koren, R. Bell, and C. Volinsky. Matrix factorisation techniques for recommender systems. Computer,
42(8):30–37, Aug. 2009. 1, 2, 8, 10, 12, 37

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012,
Lake Tahoe, Nevada, United States., pages 1106–1114, 2012. 3, 71, 84

93

A. Krohn-Grimberghe, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. Multi-relational matrix
factorization using bayesian personalized ranking for social network data. In WSDM ’12, 2012. 15,
40, 46

M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets: One-sided selection. In
International Conference on Machine Learning (ICML), 1997. 55

N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering with adaptive neighbourhoods.
In Proceedings of the 32Nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’09, pages 796–797, New York, NY, USA, 2009. ACM. 84

N. D. Lawrence and R. Urtasun. Non-linear matrix factorisation with gaussian processes. In Proceedings
of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 601–608, New
York, NY, USA, 2009. ACM. 11

D. Lee and K. Hosanagar. Impact of recommender systems on sales volume and diversity. 2014. 1

J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approximation. In Proceedings of the
30th International Conference on Machine Learning, 2013. 12, 81

J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware recommender
system. In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, ICDE
’12, pages 450–461, Washington, DC, USA, 2012. IEEE Computer Society. 85

M. Levy and K. Jack. Efficient top-n recommendation by linear regression. In RecSys Large Scale
Recommender Systems Workshop, 2013. 13, 55, 60, 66

S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denoising auto-encoder. In Pro-
ceedings of the 24th ACM International on Conference on Information and Knowledge Management,
CIKM ’15, pages 811–820, New York, NY, USA, 2015. ACM. 76

W.-J. Li and D.-Y. Yeung. Relation regularized matrix factorization. In Proceedings of the 21st inter-
national jont conference on Artifical intelligence, IJCAI’09, pages 1126–1131, San Francisco, CA,
USA, 2009a. Morgan Kaufmann Publishers Inc. 16, 17, 21, 37

W.-J. Li and D.-Y. Yeung. Relation regularized matrix factorisation. In Proceedings of the 21st inter-
national jont conference on Artifical intelligence, IJCAI’09, pages 1126–1131, San Francisco, CA,
USA, 2009b. Morgan Kaufmann Publishers Inc. 4, 29

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations.
Machine Learning, 46(1-3):191–202, 2002. 54

G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, Jan. 2003. 1, 2, 8, 9, 13, 56

P. Lops, M. de Gemmis, and G. Semeraro. Recommender Systems Handbook, chapter Content-based
Recommender Systems: State of the Art and Trends, pages 73–105. Springer US, Boston, MA, 2011.
8

H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix fac-
torization. In Proceedings of the 17th ACM conference on Information and knowledge management,
CIKM ’08, pages 931–940, New York, NY, USA, 2008a. ACM. 15, 17, 37

94 Bibliography

H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic matrix fac-
torisation. In Proceedings of the 17th ACM conference on Information and knowledge management,
CIKM ’08, pages 931–940, New York, NY, USA, 2008b. ACM. 2, 4, 29, 37

H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of
the 32nd international ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’09, pages 203–210, New York, NY, USA, 2009a. ACM. 17

H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of
the 32nd international ACM SIGIR conference on Research and development in information retrieval,
SIGIR ’09, pages 203–210, New York, NY, USA, 2009b. ACM. 2, 29

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In
Proceedings of the fourth ACM international conference on Web search and data mining, WSDM ’11,
pages 287–296, New York, NY, USA, 2011a. ACM. 16, 17, 21, 37

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In
Proceedings of the fourth ACM international conference on Web search and data mining, WSDM ’11,
pages 287–296, New York, NY, USA, 2011b. ACM. 2, 29

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. 2008. 19, 26, 44

A. K. Menon, H. Narasimhan, S. Agarwal, and S. Chawla. On the statistical consistency of algorithms
for binary classification under class imbalance. In ICML ’13, pages 603–611, 2013. 54

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119, 2013. 3, 71

J. A. Nelder and R. J. Baker. Generalized Linear Models. 2004. 3

X. Ning and G. Karypis. SLIM: sparse linear methods for top-n recommender systems. In 11th IEEE
International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14,
2011, ICDM ’11, pages 497–506, 2011. 2, 13, 54, 55, 63

J. Noel, S. Sanner, K.-N. Tran, P. Christen, L. Xie, E. V. Bonilla, E. Abbasnejad, and N. Della Penna.
New objective functions for social collaborative filtering. In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, pages 859–868, New York, NY, USA, 2012. ACM. 2, 4,
17, 21, 28, 29, 37

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class collaborative
filtering. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM
’08, pages 502–511, Washington, DC, USA, 2008. IEEE Computer Society. 12, 14, 54, 59

M. J. Pazzani and D. Billsus. The adaptive web. chapter Content-based Recommendation Systems,
pages 325–341. Springer-Verlag, Berlin, Heidelberg, 2007. 1, 8

G. C. Reinsel and R. Velu. Multivariate Reduced-Rank Regression: Theory and Applications (Lecture
Notes in Statistics). Springer, 1998. 56

95

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalised ranking
from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09, pages 452–461, Arlington, Virginia, United States, 2009. AUAI Press. 14, 54

P. Resnick and H. R. Varian. Recommender systems. Commun. ACM, 40(3):56–58, Mar. 1997. 1, 8

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for col-
laborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported
cooperative work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM. 9

M. Riedmiller and H. Braun. Rprop - a fast adaptive learning algorithm. 1992. 75

D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion
across topics: idioms, political hashtags, and complex contagion on twitter. WWW ’11, 2011. 36

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of research. chapter
Learning Representations by Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA,
USA, 1988. 73

D. Saez-Trumper, D. Nettleton, and R. Baeza-Yates. High correlation between incoming and outgoing
activity: A distinctive property of online social networks? In Proceedings for the fifth International
AAAI Conference on Weblogs and Social Media, ICWSM ’11, 2011. 23, 36

S. Sahebi and W. W. Cohen. Community-based recommendations: a solution to the cold start problem.
In RSWEB, 2011. 15, 40

R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorisation using markov chain monte
carlo. In Proceedings of the 25th international conference on Machine learning, ICML ’08, pages
880–887, New York, NY, USA, 2008a. ACM. 11

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorisation. In Advances in Neural Information
Processing Systems, 2008b. 2, 10, 12, 28

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering.
In Proceedings of the 24th international conference on Machine learning, ICML ’07, pages 791–798,
New York, NY, USA, 2007. ACM. 3, 73

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international conference on World Wide Web, WWW ’01,
pages 285–295, New York, NY, USA, 2001. ACM. 1, 2, 8, 9, 12, 54

A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recom-
mendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’02, pages 253–260, New York, NY, USA, 2002.
ACM. 15

P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to
visual document analysis. Institute of Electrical and Electronics Engineers, Inc., August 2003. 84

A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’08, pages 650–658, New York, NY, USA, 2008. ACM. 15

96 Bibliography

P. Singla and M. Richardson. Yes, there is a correlation: - from social networks to personal behavior on
the web. In Proceedings of the 17th international conference on World Wide Web, WWW ’08, pages
655–664, New York, NY, USA, 2008. ACM. 16, 37

P. Sollich and A. Krogh. Learning with ensembles: How over-fitting can be useful. 1996. 84

N. Srebro and T. Jaakkola. Weighted low-rank approximations. In Proceedings of the 20th International
Conference on Machine Learning, ICML ’03, pages 720–727, 2003. 10

D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In
Proceedings of the 18th international conference on World wide web, WWW ’09, pages 111–120,
2009. 11

L. Tang and P. Harrington. Scaling matrix factorization for recommendation with randomness. In
Proceedings of the 22nd international conference on World Wide Web companion, pages 39–40. In-
ternational World Wide Web Conferences Steering Committee, 2013. 14, 66, 68

L. Tang and H. Liu. Relational learning via latent social dimensions. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 817–
826, New York, NY, USA, 2009. ACM. 45

T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In
Proceedings of the 25th international conference on Machine learning, ICML ’08, pages 1064–1071,
New York, NY, USA, 2008. ACM. 73

A. van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages 2643–2651. Curran Associates, Inc., 2013. 40, 81

G. Ver Steeg, R. Ghosh, and K. Lerman. What stops social epidemics? In Proceedings for the fifth
International AAAI Conference on Weblogs and Social Media, ICWSM ’11, 2011. 36

J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining recommendations using tags. In Proceedings
of the 14th International Conference on Intelligent User Interfaces, IUI ’09, pages 47–56, New York,
NY, USA, 2009. ACM. 3

H. Wang, M. Terrovitis, and N. Mamoulis. Location recommendation in location-based social networks
using user check-in data. In Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL’13, pages 374–383, New York, NY,
USA, 2013. ACM. 85

H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’15, pages 1235–1244, New York, NY, USA, 2015. ACM. 76, 81

D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. Journal of Consumer
Research, 2007. 36

C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao. User interactions in social networks and their
implications. In Proceedings of the 4th ACM European conference on Computer systems, EuroSys’09.
ACM, 2009. 36

97

Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recom-
mender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining, WSDM ’16, pages 153–162, New York, NY, USA, 2016. ACM. 76, 81

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In D. Blei and F. Bach, editors,
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2048–
2057. JMLR Workshop and Conference Proceedings, 2015. 84

S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike: joint friendship
and interest propagation in social networks. In Proceedings of the 20th international conference on
World wide web, WWW ’11, pages 537–546, New York, NY, USA, 2011a. ACM. 16, 21, 37

S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike: joint friendship
and interest propagation in social networks. In Proceedings of the 20th international conference on
World wide web, WWW ’11, pages 537–546, New York, NY, USA, 2011b. ACM. 29

M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social networks. In Pro-
ceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS ’10, pages 458–461, New York, NY, USA, 2010. ACM. 85

K. Yu and V. Tresp. Learning to learn and collaborative filtering. In Neural Information Processing
Systems Workshop on Inductive Transfer: 10 Years Later, 2005. 56

T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learning,
46(1-3):91–129, 2002. 52

Y. Zhang and M. Pennacchiotti. Predicting purchase behaviors from social media. In Proceedings of
the 22nd international conference on World Wide Web, WWW ’13, pages 1521–1532. International
World Wide Web Conferences Steering Committee, 2013. 1

Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. Explicit factor models for explainable
recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International
ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’14, pages
83–92, New York, NY, USA, 2014. ACM. 11

Zhang, Zi-Ke, Liu, Chuang, Zhang, Yi-Cheng, and Zhou, Tao. Solving the cold-start problem in recom-
mender systems with social tags. EPL, 92(2), 2010. 15, 40

	Declaration
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Background: Personalised recommendation
	Motivation: What is lacking in existing CF algorithms?
	Our approach to CF: Linear models and beyond
	Linear models for recommendation
	Beyond linear models

	Key contributions of dissertation
	Outline of dissertation

	Overview of Recommender Systems
	Recommendation problem: Formal definition
	Approaches to recommendation
	Content based filtering (CBF)
	Collaborative filtering (CF)

	Collaborative filtering models
	Neighbourhood models (KNN)
	Matrix factorisation models (MF)

	Collaborative filtering scenarios
	Explicit feedback CF
	One-class CF
	Cold-start CF
	Social CF

	Evaluation of recommender systems
	Error based metrics
	Ranking metrics

	Summary

	Linear Models for Social Recommendation
	Problem statement
	Background
	Social affinity filtering
	Social signals
	Social affinity features from social signals
	Recommendation model
	Model analysis

	Experiment and evaluation
	Data description
	Model comparision
	Performance analysis
	Cold-Start evaluation
	Interaction analysis
	Activity analysis

	Related work and discussion
	Conclusion

	Linear Models for Cold-Start Recommendation
	Problem setting
	Background
	Neighbourhood based cold-start CF
	MF based cold-start CF
	Limitations of existing approaches

	Linear models for cold-start recommendation
	Generalised neighbourhood (Gen-Neighbourhood) based cold-start model
	Low linear cold-start (LoCo) model

	Relation to existing models
	Neighbourhood model
	CMF model
	BPR-LinMap model

	Experiment and evaluation
	Data description
	Model comparison
	Results and analysis

	Conclusion

	Linear Models for One-Class Collaborative Filtering
	Problem setting
	LRec: Linear model for OC-CF
	A linear classification perspective
	A positive and unlabelled perspective
	Properties of LRec

	Extensions of LRec
	Incorporating side-information
	Weighting for class-imbalance
	Subsampling negatives

	Relation to existing models
	Relation to SLIM
	Relation to neighbourhood methods
	Relation to matrix factorisation

	LRec for rating prediction?
	LinearFlow: Fast low rank linear model
	Experiments and evaluation of LRec model
	Data description
	Evaluation protocol
	Model comparison
	Results and analysis
	Long-tail recommendations
	Near cold-start recommendation
	Case-Study

	Experiments and evaluation of Linear-FLow model
	Data description
	Evaluation protocol
	Model comparison
	Results and analysis

	Conclusion

	Beyond Linear Models: Neural Architecture for Collaborative Filtering
	Problem setting
	Background : Neural network architectures
	Restricted Boltzmann Machine (RBM)
	Autoencoders
	RBM for collaborative filtering (RBM-CF)

	AutoRec: Autoencoders meet collaborative filtering
	Relation to existing models
	Relation to matrix factorisation
	Relation to LRec and Linear-FLow
	Relation to LoCo

	AutoRec for OC-CF
	Experiments and evalution
	Data description
	Model comparison
	Results and analysis

	Conclusion

	Conclusion
	Summary of Contributions
	Future work
	Exploration of emerging deep learning architectures
	Incorporating temporal information
	Ensemble methods for OC-CF
	Models for location aware recommendation

	Conclusion

	Appendix Randomised SVD
	Bibliography

