AutoRec: Autoencoders Meet Collaborative Filtering Suvash Sedhain^{1,2}, Aditya Krishna Menon^{2,1}, Scott Sanner^{2,1}, Lexing Xie^{1,2} ANU¹, NICTA²

Motivation

Australian

Jniversity

National

Autoencoders have been proven very successful in various vision and speech problems. Can we do the same for collaborative filtering?

A: Yes

Rating prediction problem

Experiments

Data Description		
	#users	#items
Ml-1M	$6,\!040$	3,706
Ml-10M	$69,\!878$	$10,\!677$
Netflix	$480,\!189$	$17,\!770$

Q: Is user- or item-based modelling better?

		ML-1M	ML-10M
A: Item-based is	U-RBM	0.881	0.823
superior.	I-RBM	0.854	0.825
	U-AutoRec	0.874	0.867
	I-AutoRec	0.831	0.782

partially Given a user-item observed rating matrix, R^{m×n}, fill in the missing entries

AutoRec model

For each item, construct (partially observed) vector of ratings $\mathbf{r}^{(i)}$

Perform autoencoding on result, where

- Weights are tied across items
- Only observed ratings are used to

Q: What are good choices of activations f(.), g(.)?

A: Nonlinearity in	Ī
hidden unit is key for	S
norformanco	Ι
periornance	ç

$f(\cdot)$	$g(\cdot)$	RMSE
Identity	Identity	0.872
Sigmoid	Identity	0.852
Identity	Sigmoid	0.831
Sigmoid	Sigmoid	0.836

NICTA

Q: How many hidden units are needed for AutoRec?

Q: How does AutoRec perform against all baselines?

update model

Training objective:

Prediction:

 $\min_{\theta} \sum_{i=1}^{n} ||\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2}),$

Comparisons with existing methods

	AutoRec	RBM-CF
Model type	Discriminative	Generative
Objective	RMSE	Log-likelihood
Optimisation	Gradient-based (fast)	Contrastive divergence (slow)
Ratings	Real-valued	Discrete

A: System	natically		
outperforms	state-of-		
the-art methods			

ML-1M	ML-10M	Netflix
0.845	0.803	0.844
0.854	0.825	-
0.881	0.823	0.845
0.833	0.782	0.834
0.831	0.782	0.823
	ML-1M 0.845 0.854 0.881 0.833 0.831	ML-1MML-10M0.8450.8030.8540.8250.8810.8230.833 0.7820.8310.782

Q: Do deep extensions of AutoRec help?

A: Deep I-AutoRec with three hidden layers (500-200-500) reduced RMSE from 0.831 to 0.827 on ML-1M dataset.

Try it now: https://github.com/mesuvash/NNRec

Future work

Further exploration of deep autoencoders, and

	AutoRec	Matrix Factorization
Embedding	Users only	Users and items (more parameters)
Representation	Non-linear	Linear

applications to implicit feedback datasets.

References

[1] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42, 2009.

[2] J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approximation. In ICML, 2013.

[3] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: the rprop algorithm. In IEEE International Conference on Neural Networks, 1993.

[4] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann machines for collaborative filtering. In ICML, 2007.

[5] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, 2001.

